Math 337 Review Exam 2

1. a. For x = ( g _i ) X, the characteristic equation satisfies
5—-X =1 | o - -
det 3 1_)\’—)\ —6A+8=(A—4)(A\—2) =0,

. . . . 1
so A1 = 2. With this eigenvalue, the eigenvector is vi = <

3 ) The other eigenvalue is Ay = 4,

and its associated eigenvector vo = < > It follows that the general solution is

1

1 1
x@:q<3>g+@<1>ﬁj

which is an unstable node. To satisfy the initial value problem, solve

11 a\ _ [ —1 _ _
<3 1><02>_< 2), so ¢ =15 and co=-—2.5.

This gives the unique solution
(1B e 25\ u
x<t>_<4.5>e <2.5>6‘

Below shows the phase portrait with the eigenvectors (blue), the solution to the IVP (red), and
typical solutions (rainbow).
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b.Foer(

-5
-2

9 _
1

A -5

det 9

S0 A12 = £t. For eigenvalue A1 = ¢, the eigenvector is vi = (

<Qii)(wdﬂ+¢mm@):<

5 cos(t)
2 cos(t) + sin

mpq<

5
2

0
-1

C1
C2

(2 )

(

This gives the unique solution

3

5

5 cos(t)

() = 2 cos(t) + sin(t)

(1 ) e < 2sin() - st

which is a center. To satisfy the initial value problem, solve

_(3 SO c—§ and c—1
— 1 ) 1_5 2_5-
)+

Below shows the phase portrait with the solution to the IVP (red) and typical trajectories (rainbow),
where the trajectories travel counterclockwise.

> X, the characteristic equation satisfies

0,

_ 2
[

5
2—1

5cos(t) + 5isin(t)
2 cos(t)

Taking the real and imaginary parts gives the general solution

).

1

5

)

( 5sin(t)
2sin(t) — cos(t)
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). The complex solution is

+ sin(t) + (2sin(t) — cos(t))
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c.ForX:( 9 _4

) X, the characteristic equation satisfies

e 2

det 9 4

‘:V+6A:MA+®:&

-1

5 > The other eigenvalue is Ay = 0,

so A1 = —5. With this eigenvalue, the eigenvector is v; = <

i ) It follows that the general solution is

ﬂﬂ:q<_;>€“+@<?>,

which has a line of equilibria (A2 = 0), which are stable. To satisfy the initial value problem, solve

-1 2 ca\ [ —2 - -
( 9 1><c2>_< 8)’ so ¢ =36 and ¢y =0.8.

This gives the unique solution

Mﬂ:36<_;>6m+08<i>.

Below shows the phase portrait with the line of equilibria (black line), the solution to the IVP
(red), and typical trajectories (rainbow).

and its associated eigenvector vo = <
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d.Foer( 0

3 _4 ) X, the characteristic equation satisfies

- 1

det _8 4

‘:)\2+4)\+8:0,

1

o9 ) The complex

S0 A2 = —2%2:. For eigenvalue Ay = —2+ 21, the eigenvector is vi = (

solution is

1 iy . o (cos(2t) + isin(2t))
xa(t) = ( —2+2i ) e (cos(2t) +isin(2t)) = ( —2cos(2t) — 2sin(2t) + i(—2sin(2¢) + 2 cos(2t)) > ’

Taking the real and imaginary parts gives the general solution

Y cos(2t) ot sin(2t)
x(t) = ere™ ( —2cos(2t) — 2sin(2t) ) o™ ( —2sin(2t) + 2 cos(2t) >

which is a stable. To satisfy the initial value problem, solve

1 0 C1 o —2 _ .
(_2 2)(@)-( 6)’ so ¢ =-2 and ¢y =1.

This gives the unique solution

_ oy cos(2t) o sin(2t)
x(t) = —2¢° < —2cos(2t) — 2sin(2t) ) e < —2sin(2t) + 2 cos(2t) >

Below shows the phase portrait with the solution to the IVP (red) and typical trajectories (rainbow),
where the trajectories travels clockwise.
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1777 7=~A A L L
AV N AR AT Y R L N A
AN SR I L I | O
(BN AV Al NANR Y TR (R T (A A
(L L A \ N AL T T T A A
[ A\ N T I B S T T
(R B AN VY T N T A A
BEEEENEEA NI

BEETA IR EIEE ,

1111 /ﬂ\,t | U
-10 14 1 Yo/ | Ny )
‘ 1141‘\\\/£Hxll ,
N 11‘1\\\\//IIH ,
TP PPN NN~ o
£ T T O W O 3 I N\ N A A A A
TP PPV AV ANNNNS2/ L T
PTAT AN NNANNN—= L
TITAVYMNVAWWNANNNS L L]
PAVT WV MMV ANIANANNS Y2 1 )
ORI R O o ¥ L NN A




-1 =1
e. For x = ( 2 > X, the characteristic equation satisfies
2 -3

-1-Xx =05

det) Ty 3o

=N 44 +4=(N+2)2=0,

so A = —2 is a repeated eigenvalue with an eigenspace of dimension 1 spanned by the eigenvector

V= ( ; ) The second solution requires solving (A + 2I)w = v (for the higher null space) or

(2 ) (0)-(2)

which has the solution w = ( (1) ) +k ( ; ) It follows that the general solution is

x(t):q(;)e_%—i-cQ[( ; )t+<é>]e‘2t,

which is a stable improper node. To satisfy the initial value problem, solve

1 1 C1 . 6 _ .
<2 0)<02>_<—2>’ so ¢cg=-1 and ¢ =7.

This gives the unique solution

)= () et|(2 ) (o))

Below shows the phase portrait with the one eigenvector (blue), the solution to the IVP (red), and

typical trajectories (rainbow).
Stable Improper Node
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f.FOI‘X:<_5 4

) x, the characteristic equation satisfies

—2—-A 1

det 5 4\

‘:)\2—2>\—3:(>\+1)()\—3):O,

1
so A1 = —1. With this eigenvalue, the eigenvector is v = < 1 ) The other eigenvalue is Ay = 3,

é ) It follows that the general solution is

x(t):cl< 1 )e_t+02<é>€3ta

which is an saddle node. To satisfy the initial value problem, solve

11 ca\_ (3 B B
(1 5)<CQ>—<4>, so ¢1 =275 and c¢o =0.25.

This gives the unique solution

x(t) = 2.75 < 1 > et 4+0.25 < é ) e,

Below shows the phase portrait with the eigenvectors (blue), the solution to the IVP (red), and
typical solutions (rainbow).

and its associated eigenvector vo = <

Saddle Node
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2. The system given by:

has the characteristic equation

—1-X o

det 1 1o

‘:A2+2)\+1+a:0.

This has the eigenvalues A = —1 4+ /—a. There are clearly qualitative changes at « = —1 and
a=0.

At a = —1, the system has the eigenvalues A\; = —2 and Ay = 0. The latter, Ay = 0, leads to
the degenerate case where the system has a line of equilibria. The general solution satisfies:

e D) t)en

For a < —1, the system has a saddle node (a positive and a negative eigenvalue) with a typical
phase portrait (o« = —2) as shown below on the left. When o = —1, there is the degenerate case
with a line of equilibria and all solutions converging to that line (1 = —xz2). This is shown in
the phase portrait below on the right
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For —1 < a < 0, the system has a stable node (A\; < A\ < 0) with a typical phase portrait
( = —0.25) as shown below on the left. When a = 0, there is a stable improper node with
both eigenvalues, A = —1. This is shown in the phase portrait on the right.
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a = 0, Stable Improper Node

—1 < a <0, Stable Node

Finally, for a > 0, the eigenvalues have complex values with negative real parts, which results in a

stable spiral. The phase portrait is below.

Stable Spiral
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3. First, find the equilibrium for:

d:L‘1

—xr1 — 4wy + 6,

so solve

—2.

10 or 9. = 2 and x1. =

Thus, 5x9,



Make the change of variables, z1(t) = z1(t) + 2 and 22(t) = 22(t) — 2. The DE for z(t) is
7z = -Lo Z
- 1 -1 '

—-1-A —4
1 —1-A

This has the characteristic equation

det

‘ = A 4+2X4+5=A+1)2+4=0.
It follows that the eigenvalues are A\;2 = —1 % 2i. For the eigenvalue \; = —1 + 27, there is the

. 4 .
eigenvector vi = < 9 ), so the complex solution is

z1(t) = < _4% ) e (cos(2t) +isin(2t)) = e " < ;1;05((22;)) j—;;s:;;gg > ’

The general solution for this problem is
_¢ ( 4cos(2t) _ 48in(2t) -2
_ t t
x(t) = cre < 2sin(2¢) > e < —2cos2t) ) T\ 2 )

We solve the IVP, so

s =T (e ) (72).

4. From the information, we write the rate
of change in amounts, A;(t) and Ax(t).
The rate of change in amount is concentra-
tion times flow rate.

dA;

7 = amount enter — amount leave.

For Tank 1, the amount entering is f1q; and
f3co, while the amount leaving is fyc1. Simi-
lar expressions give the equation for Tank 2.
The concentration equations follow by simply dividing the amount equations by the appropriate
volumes.

With the data the amount equations are

dA;
dt
dAs
dt

= 03:-84+404-c0—0.7-¢y,

= 02:-15402:-¢1 —04"-co.



Dividing by the volumes gives the concentration equations

d01 7 1 3
@~ 20007 T 5002 T 2500
dCQ 1 1 3

E = %Cl — %02 + ﬁ

The equilibria are found first by solving:

7 1 3
mcle - @626 = ﬁ’
1 1 3
_%Cle + ﬁCQe = 100

It follows that ¢1. = 10.8 g/1, while coe = 12.9 g/1. This gives the equilibrium solution, which will
be the asymptotic limit for the concentrations.
We make a change of variables z1(t) = ¢1(t) — 10.8 and 22(t) = c2(t) — 12.9. The homogeneous

equation, z = Az, is
Z\ _ [ —0.0035 0.002 21
9 ) 0.002  —0.004 zo )

The characteristic equation is

—0.0035 — X 0.002 2 B
det 0.002 0004 — ) ’ = A* +0.0075A + 0.00001 = 0,
which gives Ay = —0.0057656 with its associated eigenvector v; = < _1 113278 > and Xy =

1.13278
1

z1(t) '\ _ 1 —0.0057656t 113278 '\ _0.0017344¢ 10.8
( za(t) ) —a ( —1.13278 ) € Tel )¢ T\ 129 )
which is a stable node. The solution to the IVP satisfies
1 1.13278 ctc\ _ (2-1081\ [ —838
—1.13278 1 o) \3-129 )  \ —-9.9 )’

which gives ¢; = 1.05752 and co = —8.70206. It follows that the unique solution to the IVP is

z1(t) \ _ 105752 3 _o.0057656t | ( —9-85754 1\ _o.0017344¢  ( 10.8

2o (t) —1.19794 —8.70206 129 )

This solution clearly shows that the trajectory converges asymptotically to the equilibrium solution
as expected.

—0.0017344 with its associated eigenvector vo = < > This results in the general solution

5. The predator-prey model is given by:

dH
dt
dP
dt

= 0.1H —0.0005H? — 0.016HP = f,(H,P),

= 0.005HP —0.2P = f,(H,P).



The equilibria satisfy:
H.(0.1 —0.0006H, — 0.016P.) = 0,
P.(0.005H, —0.2) = 0.

One equilibrium is (He, P.) = (0,0), the extinction equilibrium. When P, = 0, then there is
another equilibrium at H, = 200, the carrying capacity. Finally, there is a third equilibrium with
0.005H. — 0.2 =0 and 0.1 —0.0005H, — 0.016 P, = 0. The first equation gives H. = 40, which gives
P. =5 in the second equation. Thus, there is a coexistence equilibrium, (He, P.) = (40, 5).

As we did in class, we use Taylor’s theorem to linearize this system about the equilibria (finding
the Jacobian matrix). If h(t) = H(t) — H. and p(t) = P(t) — P., then the linearized system can
be written:

( i > - 3f1(£1}:7Pe) (9f1(§;e»Pe) ( h > B 0.1 — 0.001H, — 0.016F, —0.016H, < h >
P Ofalllele)  Ofa(Hele) p 0.005P. 0.005H, — 0.2 p)
The linear system about (He, P.) = (0,0) is
A (01 0 h
p ) 0 —-0.2 p )’

which has eigenvalues Ay = —0.2 with associated eigenvector v; = <

(1) > and Ay = 0.1 with

1
associated eigenvector vo = ( 0 ) This is a saddle node at the extinction equilibrium. The

general linear solution is given by

(58) -o(2)ewa (i)

Thus, if there are both predators and prey, then the solution moves away from extinction (unstable).
The linear system about (H., P.) = (200,0) (carrying capacity of prey) is

hY [ —01 -32 h
p ) 0 0.8 p )’
which has eigenvalues Ay = —0.1 with associated eigenvector v; = < (1) > and Ay = 0.8 with

32

associated eigenvector vo = ( 9

>. This is a saddle node at this equilibrium. The general

linear solution is given by

(1) tsa )

Thus, if there are both predators and prey near the carrying capacity, then the solution moves away
from this equilibrium (unstable).
The linear system about (H,, P.) = (40, 5) (coexistence) is

(- ) ()



The characteristic equation is

—-0.02—-X -0.64

det | 095 Y

‘ = A2 4 0.02)\ + 0.016 = 0,

which has eigenvalues A2 = —0.01 &£ 0.1261¢. Let w = 0.1261 then for Ay = —0.01 + 7w, the

.64
associated eigenvector is vi = < 0 (())16 Ciw >, which leads to the general solution

< h(t) ) _ o001 < 0.64 cos(wt) o ) e 001 < 0.64 sin(wt) ) .

—0.01 cos(wt) + wsin —0.01 sin(wt) — w cos(wt)

This is a stable spiral, so all solutions of this model spiral into the coexistence equilibrium,

(H67 Pe) = (40, 5)'

6. The competition model is given by the system of differential equations:

d
% = 0.3z — 0.00522 — 0.009z122 = g1(z1,22),
il 0.1z — 0.002525 — 0.002zx122 = ga(z1,z2).

The equilibria are found by solving:
g1 (1’16, afge) = 1'16(0.3 — 0.0051‘16 — 0.0091’26) = 0,
92(.7}16, 33‘26) = .1‘26(0.1 — 0.00251‘2@ — 0.002$1e) = 0.

This system has 4 equilibria. The trivial or extinction equilibrium is obvious, (x1¢, z2¢) = (0,0).
When one of the populations is zero, then the other can go to its carrying capacity. Thus, when
r9. = 0, the equation 0.3 — 0.005z1, = 0 gives the carrying capacity of x1 with the equilibrium
(T1e, x2¢) = (60,0). Similarly, when z1. = 0, the equation 0.1 — 0.0025z9. = 0 gives the carrying
capacity of xg with the equilibrium (z1¢, z2:) = (0,40). The coexistence equilibrium satisfies

0.005z1, + 0.009z2, = 0.3 and 0.0025x2, + 0.00221, = 0.1,

which gives (21, T2.) =~ (27.273,18.182).
As we did in the previous problem, we linearize and find the Jacobian matrix (using Taylor’s
theorem). If y1 (t) = x1(t) — x1. and ya(t) = x2(t) — x2¢, then the linearized system can be written:

0g1(T1e,22e)  Og1(®ie,o2e)

(3 _ dyrh dy2 Y1
yz 892(171&,9626) 892($1e,9€26) Y2
Y1 0y2
( i > _ 0.3 — 0.01x1, — 0.00922, —0.009x1, < n )
Y2 —0.002x9, 0.1 — 0.005x2, — 0.002x1, Y2

The linear system about (z1e, x2.) = (0,0) is

()= (%) ()



which has eigenvalues A\; = 0.1 with associated eigenvector v; = < g) > and Ao = 0.3 with asso-

ciated eigenvector vo = 0 ) This is an unstable node at the extinction equilibrium. The

general linear solution is given by

(i )= (0) v o)

Thus, if there are any individuals of either species, then the solution moves away from extinction
(unstable).
The linear system about (x1e, z2.) = (60,0) is

n\ _ ([ —03 —0.54 Y1
v ) 0 —0.02 yo )’
which has eigenvalues A\; = —0.3 with associated eigenvector vi = ( (1) > and Ay = —0.02 with

27
—14
The general linear solution is given by

()= (5 ) (5T)

Thus, near this equilibrium all solutions are attracted, leading to extinction of species 5.
The linear system about (z1e, x2.) = (0,40) is

yl o —0.06 0 Y1
g )\ —0.08 —0.1 v )’

which has eigenvalues A\; = —0.1 with associated eigenvector vi = (

associated eigenvector vo = ( > . This is a stable node at this carrying capacity equilibrium.

(1) ) and Ao = —0.06 with

associated eigenvector vo = > . This is a stable node at this carrying capacity equilibrium.

-2
The general linear solution is given by

(50) -0 (£)era( 3

Thus, near this equilibrium all solutions are attracted, leading to extinction of species x.
The linear system about (x1., z2.) = (27.273,18.182) is

g1\ _ [ —0.13636 —0.24545 n
g2 )~ \ —0.03636 —0.04545 A

which has eigenvalues A\; = —0.19575 with associated eigenvector v; = < 0 2i195 ) and Ay =
0.013932 with associated eigenvector vy = ( 0 611 939 ) This is a saddle node at this coexis-

tence equilibrium. The general linear solution is given by

yi(t) ) _ 1 —0.19575¢ 1 0.013932¢
< Yo (t) ) - < 0.24195 ) © Tel ez )€ '



Thus, near this equilibrium the solutions split and go away from the coexistence equilibrium.
Depending on initial conditions the solution will eventually go toward one of the carrying capacity
equilibria, leaving one species at carrying capacity and the other species extinct. This is known as
competitive exclusion.



