
Spring 2018 Math 541

Homework – Splines Due Tues. 4/16/18

1. (25pts)a. The natural spline code takes x and y values, which are computed before invoking.
The code is identical to the class spline code cubic splinenat with a few lines changed at the
top for the x input and function, then the graphing lines 11-14 and 72-79 were removed. The
x input is x = [0:4], while the y input evaluates

f(x) = 5e0.2x, x ∈ [0, 4],

using y = fcn hw7(x). The function satisfies:

1 function y = fcn hw7(x)
2 % Function definition for hw 7
3 y = 5*exp(0.2*x);
4 end

The best cubic spline S3(x) for x ∈ [2, 3] is given by

S3(x) = s1(x− 2)3 + s2(x− 2)2 + s3(x− 2) + s4

= 0.039025457(x− 2)3 + 0.125722978(x− 2)2 + 1.486722078(x− 2) + 7.459123488.

Using these spline values to find the integral, compared with the actual integral∫ 3

2
S3(x) dx =

(
s1

(x− 2)4

4
+ s2

(x− 2)3

3
+ s3

(x− 2)2

2
+ s4

)∣∣∣∣3
2

=
s1
4

+
s2
3

+
s3
2

+ s4

= 8.254148551 and∫ 3

2
f(x) dx = 8.257352569.

Significantly, we see that the integration depends only on the coefficients of the cubic and the
step size of the subintervals. The absolute error is∣∣∣∣∫ 3

2
S3(x) dx−

∫ 3

2
f(x) dx

∣∣∣∣ = 0.003204018.

b. The spline quadrature program is designed for any function, f , interval [a, b], and number of
divisions N , and it is given by:

1 function sum = spline quad(f,a,b,N)
2 %Quadrature using splines
3

4 x = linspace(a,b,N+1);
5 y = f(x);
6

7 P = cubic splinenat(x,y);
8

9 h = (b-a)/N;
10 sum = 0;
11 for i = 1:N
12 sum = sum + P(i,1)*hˆ4/4 + P(i,2)*hˆ3/3 + P(i,3)*hˆ2/2 + P(i,4)*h;
13 end
14 end

By invoking this code in MatLab with spline quad(@fcn hw7,0,4,4), we obtain the
approximation: ∫ 4

0
S3(x) dx ≈ 30.65376468.

The exact integral is: ∫ 4

0
5e0.2x dx = 25(e0.8 − 1) = 30.63852321.

The absolute error is 0.015241471.

c. Along with the spline quadrature we use our Composite Trapezoid Rule:

1 function T = comptrap(f,a,b,N)
2 % Composite Trapezoid Rule for function f(x)
3 % on [a,b] using N steps
4 h = (b-a)/N;
5 i = 0:N-1;
6 xi = a+i*h;
7 xi1 = a+(i+1)*h;
8 T = (h/2)*sum(f(xi)+f(xi1));
9 end

The quadrature programs are invoked with the following script that also calculates the order of
convergence numerically and creates graphs for the convergence. This script doubles the value
of N 5 times, computing the error against the actual integral.

1 % Need to compare spline quadrature to composite trapezoid
2 % Use our function and double number of steps for N = 2 and double 5 times
3 a = 0; b = 4; N = 2;
4 act = 25*(exp(0.8)-1);
5 lnh = []; lnS = []; lnT = []; ES = []; ET = [];
6 for i = 1:6
7 S = spline quad(@fcn hw7,a,b,N);
8 ES = [ES,abs(S-act)];
9 T = comptrap(@fcn hw7,a,b,N);

10 ET = [ET,abs(T-act)];
11 lnS = [lnS,log(abs(S-act))];
12 lnT = [lnT,log(abs(T-act))];
13 lnh = [lnh,log((b-a)/N)];
14 N = 2*N;
15 end
16 coS = polyfit(lnh,lnS,1)
17 coT = polyfit(lnh,lnT,1)

18 figure(2)
19 plot(lnh,lnS,'bo',lnh,coS(1)*lnh+coS(2),'b--');grid
20 % Set up fonts and labels for the Graph
21 fontlabs = 'Times New Roman';
22 xlabel('$\ln(h)$','FontSize',16,'FontName',fontlabs, ...
23 'interpreter','latex');
24 ylabel('$\ln(err)$','FontSize',16,'FontName',fontlabs, ...
25 'interpreter','latex');
26 mytitle = 'Log of $abs(err)$ vs Log of h';
27 title(mytitle,'FontSize',16,'FontName', ...
28 'Times New Roman','interpreter','latex');
29 set(gca,'FontSize',16);
30 print -depsc hw7 lnerrA.eps
31 figure(3)
32 plot(lnh,lnT,'ro',lnh,coT(1)*lnh+coT(2),'r--');grid
33 xlabel('$\ln(h)$','FontSize',16,'FontName',fontlabs, ...
34 'interpreter','latex');
35 ylabel('$\ln(err)$','FontSize',16,'FontName',fontlabs, ...
36 'interpreter','latex');
37 mytitle = 'Log of $abs(err)$ vs Log of h';
38 title(mytitle,'FontSize',16,'FontName', ...
39 'Times New Roman','interpreter','latex');
40 print -depsc hw7 lnerrB.eps

Spline Quad CTR
h ln |error| ln |error|
2 0.105064 0.407428

1 0.015241 0.102060

1/2 0.0019339 0.025528

1/4 2.4217× 10−4 0.0063828

1/8 3.0292× 10−5 0.0015957

1/16 3.7877× 10−6 3.9894× 10−4

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1
−14

−12

−10

−8

−6

−4

−2

ln(h)

ln
(e
r
r
)

Log of abs(err) vs Log of h

−3 −2 −1 0 1
−8

−6

−4

−2

0

ln(h)

ln
(e
r
r
)

Log of abs(err) vs Log of h

Spline Quadrature Error Composite Trapezoid Error

From the MatLab program polyfit, we find the the best fitting line for the Cubic Spline
quadrature is

ln |error| = 2.9634 ln(h)− 4.2354,

while for the Composite Trapezoid Rule, we obtain

ln |error| = 1.9994 ln(h)− 2.2828.

The leading coefficients show numerically that the Cubic Spline quadrature technique has an
order of convergence O

(
h3
)
, while the CTR has the expected convergence of O

(
h2
)
. However,

a clock shows that the Spline method takes about 4 times longer, which would show that
using the Composite Simpson’s Rule would be much more efficient. The increase in order of
convergence would suggest that the Spline method would be better for needs of higher accuracy.

2. (20pts) a. The programs from class polyinterp.m and cubic splinenat.m use the census
data and produce the following graph.

1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000

year

0

50

100

150

200

250

po
pu

la
tio

n
(m

ill
io

ns
)

Population function fit

data points
spline
polyinterp

The polynomial and spline graphs are very similar for later years, while the polynomial fit
works poorly for the first years. We have already shown that fitting a high order polynomial
often oscillates more at the endpoints. The cubic spline is splitting the data into small smooth
segments.

b. We define the vector of years yr = [1900 1910 ... 2000] and the vector of the population
pop = [62.948 76.212 ... 248.710]. We use the MatLab program for creating vander-
monde matrices, V = vander(yr), which creates a very ill-conditioned matrix. Checking the
1-norm condition number, we obtain cond(V,1)= 1.8682675e+48. We used the
format longe to obtain the coefficients of the interpolating polynomial with c = V\pop' and

obtained:

c1 = −1.950005757027322e− 18

c2 = 2.950569627239955e− 14

c3 = −1.931690520362793e− 10

c4 = 7.095699514296991e− 07

c5 = −1.575499180270782e− 03

c6 = 2.083161299913479e + 00

c7 = −1.390802494656150e + 03

c8 = 9.070471111490215e + 03

c9 = 6.214881025066986e + 08

c10 = −3.255033064388682e + 11

c11 = 3.232923056984116e + 13

Because of the ill-conditioning, results of these coefficients may vary by a fair amount. This
wide variation suggests that the results are quite unreliable. In contrast, the coefficients of all
the cubic splines on each interval vary substantially less. If the cubic spline on each interval is
given by:

Si(x) = s3(x− xi)
3 + s2(x− xi)

2 + s1(x− xi) + s0,

then finding the maximum and minimum coefficients in absolute value from our spline program
gives:

0.000028407 ≤ |s3| ≤ 0.0052986,

6.6613× 10−17 ≤ |s2| ≤ 0.086612,

1.13259 ≤ |s1| ≤ 2.7309,

62.948 ≤ |s0| ≤ 226.546,

Thus, we expect the spline program to be significantly more stable.

c. The graph looks similar for the shifted time scale as seen below.

0 10 20 30 40 50 60 70 80 90 100

year

0

50

100

150

200

250

po
pu

la
tio

n
(m

ill
io

ns
)

Population function fit

data points
spline
polyinterp

We define the vector of years yr = [0 10 ... 100], and the vector of the population pop ...

= [62.948 76.212 ... 248.710] is the same. We use the MatLab program for creating

vandermonde matrices, V = vander(yr), which creates an ill-conditioned matrix. Checking
the 1-norm condition number, we obtain cond(V,1)= 1.01634e+21, which is substantially
improved from Part b. We used the format longe to obtain the coefficients of the interpolating
polynomial with c = V\pop' and obtained:

c1 = 1.28160273369648E − 14

c2 = −6.90905533515114E − 12

c3 = 1.5954150132395E − 09

c4 = −2.05905810186661E − 07

c5 = 0.000016252454421407

c6 = −0.000806762471070023

c7 = 0.0249378754410694

c8 = −0.457552691294531

c9 = 4.45855621510378

c10 = −15.8087594445341

c11 = 62.948

These coefficients should be more stable, so similar between different solutions. The spline
coefficients are obviously the same for this simulation by the way spines are constructed.

WeBWorK: There are 2 problems in WeBWorK with written results.

1. (3pts) The graph (identical for all versions) is

0 5 10 15
0

0.5

1

1.5

2

2.5

3
Cubic Spline Interpolation

2. (7pts) The splines with unclamped and clamped ends are shown on the graph below.

0 2 4 6 8 10 12 14

x

0

2

4

6

8

10

12
y

Cubic Spline Interpolation

Data
Clamped
Natural

The graphs will vary between students, but there should be a distinct decrease initially for the
clamped version, as all versions have a forced initial decline. The natural end conditions on
both ends has less variation. The only changes from the class clamped version of the program
are the following:

27 % Clamped boundary conditions:
28 A(1,1) = 2*h(1);
29 A(1,2) = h(1);
30 A(n,n) = 1;

and

38 % Vector b:
39 b = zeros(n,1);
40 b(1) = (3/h(1))*(a(2)-a(1)) - 3*fp(1);

