
Spring 2018 Math 541

Homework – Numerical Linear Algebra solutions Due Tues. 3/9/18

Be sure to include all MatLab programs used to obtain answers.

1. (10pts) (From the text, 2.6.) This question is

2.6. This example shows that a badly conditioned matrix does not necessarily lead to small
pivots in Gaussian elimination. The matrix is the n×n upper triangular matrix A with elements

aij =


−1, i < j.

1, i = j
0, i > j

We want to show this matrix is ill-conditioned by showing that

κ1(A) = n2n−1.

We also want to find for what n does κ1(A) exceed 1/eps?

Solution:
To generate this matrix in MatLab with eye, ones, and triu. Then set n = some number and
write the MatLab command

eye(n)- triu(ones(n),1)

So, as always, it helps to visualize the matrix A you are dealing with which looks like

A =


1 −1 −1 · · · −1
0 1 −1 · · · −1
...

. . .
. . .

...
0 · · · 0 1 −1
0 · · · 0 0 1


Recall that the condition number κ1(A) = ‖A‖1‖A−1‖1, so we need to find the norm of A and
its inverse.

In the 1-norm, we have that

‖A~x‖1 =

n−1∑
j=1

∣∣∣∣∣∣xj −
n∑

k=j+1

xk

∣∣∣∣∣∣+ |xn|

As for establishing the bound on A, using the triangle equality, we have that

n−1∑
j=1

∣∣∣∣∣∣xj −
n∑

k=j+1

xk

∣∣∣∣∣∣+ |xn| ≤ ‖~x‖1 +
n−1∑
j=1

n∑
k=j+1

|xk| ≤ ‖~x‖1 + (n− 1)‖~x‖1 = n‖~x‖1,



since
n∑

k=j+1

|xk| ≤ ‖~x‖1.

Using the vector
~en = [0 · · · 0 1]T ,

in place of ~x, we readily see that

‖A~en‖1 = n, ‖~en‖ = 1,

and thus we have that
‖A‖1 = n.

As for the inverse, if we look at the 3× 3 case, we see that

A−1 =

1 1 2
0 1 1
0 0 1

 ,

and the 4× 4 case is given by

A−1 =


1 1 2 4
0 1 1 2
0 0 1 1
0 0 0 1

 .

We thus see that one inverse is nested within the other. But this makes good sense since I can
write the n+ 1 dimensional matrix A, which we label as An+1 as

An+1 =

 An −

1
...
1


0 · · · 0 1

 ,

then we must have

A−1n+1 =

(
A−1n ~c

0 · · · 0 1

)
.

Doing the matrix multiplication then gives us

~c = A−1n

1
...
1

 .

At this point, we make the inductive hypothesis that

A−1n =


1 1 2 · · · 2n−2

0 1 1 · · · 2n−3

...
. . .

...
0 · · · · · · 1 1
0 · · · · · · 0 1

 ,



so that using basic geometric series arguments, we see that

~c =


2n−1

2n−2

...
2
1

 .

Thus, we see the inductive hypothesis is correct, and we have found the form of the inverse.

In the 1-norm, we have that

‖A−1~x‖1 =
n−1∑
j=1

∣∣∣∣∣∣xj −
n∑

k=j+1

2k−(j+1)xk

∣∣∣∣∣∣+ |xn|

Using the triangle equality and rearranging the terms, we have that

‖A−1~x‖1 ≤ 2n−1‖~x‖1.

Again with ~en, we see that

‖A−1‖1 =
‖A−1~x‖1
‖~x‖1

= 2n−1.

It follows that the condition number is

κ1(A) = ‖A‖1‖A−1‖1 = n2n−1.

Thus, looking at
n2n−1 = 1/eps,

or
log2(n) + n− 1 = − log2(eps),

using Newton’s method, we can readily find that

n ≈ 47.4,

so rounding up, for n ≥ 48, the condition number is larger than the reciprocal of machine
precision. This implies that we should be very cautious about working with A if the dimension
is larger than this value since we anticipate roundoff error completely dominating any results.

As for finding an ~x such that ||A~x||1 � ||~x||1, I would try

~x =


1

1/2
1/4

...
2−n+1

 .

In this case,
||~x||1 = 2− 2−n+1.



We then can show
||A~x||1 = n2−n+1.

Thus in the limit of large n, ||A~x||1 � ||x||1. This example shows how one might see the effects
of the ill-conditioning of this matrix since one could get, due to roundoff, A~x ≈ 0 for n ≥ 48.

Clearly the pivots with respect to Gaussian elimination are all one.

2. (5 pts) (From the text, 2.7.) The matrix factorization

LU = PA

can be used to compute the determinant of A... modify the lutx function so that it returns four
outputs.

Provide two test cases, which show your approach is correct. Note that a good way to
produce random N × N matrices in MatLab is to use the command randn(N). Use this for
examples in this problem and the next.

Solution: The magnitude of the determinant is easily found by multiplying the diagonal el-
ements of the Upper Triangular matrix U . The only part missing in the existing program is
finding the sign of det(A). The lutx.m file needs to be modified to determine the number of
pivots that occur, which will swap the sign of the determinant for each pivot. If the number
of pivots is odd, then we obtain −det(U), while if it is even then det(A) = det(U). One easy
modification to lutx is the following:

1 function [L,U,p,sig] = lutx(A)
2 [n,n] = size(A);
3 p = (1:n)';
4 sig = 1;
5 for k = 1:n-1
6 [r,m] = max(abs(A(k:n,k)));
7 m = m+k-1;
8 if (A(m,k) 6= 0)
9 if (m 6= k)

10 A([k m],:) = A([m k],:);
11 p([k m]) = p([m k]);
12 sig = -sig;
13 end
14 A(k+1:n,k) = A(k+1:n,k)/A(k,k);
15 A(i,k+1:n) = A(i,k+1:n) - A(i,k)*A(k,k+1:n);
16 end
17 end
18 L = tril(A,-1) + eye(n,n);
19 U = triu(A);

Once we have this, in order to find a determinant, we need only find sig*prod(diag(U)).
Using this approach, we look at the test cases

1 A = randn(10);
2 det(A) = 3.237446354875954e+03
3 [L,U,p,sig] = lutx(A);
4 sig*prod(diag(U)) = 3.237446354875954e+03



and

1 A = randn(100);
2 det(A) = -1.366073030472072e+76
3 [L,U,p,sig] = lutx(A);
4 sig*prod(diag(U)) = -1.366073030472070e+76

We see that our approach is clearly accurate across a wide range of dimensions.

3. (12 pts) In class we solved Ax = b using a Direct Method, specifically Gaussian elimination
with partial pivoting. This used a fair number of steps, which went up computationally like
n3, where n × n was the dimension of the matrix A. Often large matrices, especially sparse
matrices are solved iteratively. These iterative methods are particularly valuable when the
matrix is diagonal dominant, which is where the value of the diagonal elements of A exceed
the sum of the other elements in the row.

a. Suppose the matrix A is written:

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

an1 an2 · · · ann


and split this matrix into a diagonal matrix D, a lower triangular matrix L, and an upper
triangular matrix U . Write the matrix:

A =


a11 0 · · · 0

0 a22
. . .

...
...

. . .
. . . 0

0 · · · 0 ann

−


0 0 · · · 0

−a21
. . .

. . .
...

...
. . .

. . . 0
−an1 · · · −an,n−1 0

−


0 −a12 · · · −a1n
0

. . .
. . .

...
...

. . .
. . . −an−1,n

0 · · · 0 0


= D − L− U

Show that if D−1 exists (aii 6= 0 for 1 ≤ i ≤ n), then the equation

Ax = (D − L− U)x = b

has the solution
x = D−1(L+ U)x+D−1b.

Solution:

Dx− Lx− Ux = b

Dx = (L+ U)x+ b

D−1Dx = D−1(L+ U)x+D−1b

x = D−1(L+ U)x+D−1b

b. If T = D−1(L+ U) and c = D−1b, then Jacobi’s iterative method satisfies the formula

x(k) = D−1(L+ U)x(k−1) +D−1b = Tx(k−1) + c.



Consider the system: 
4 1 −1 1
1 4 −1 −1
−1 −1 5 1
1 −1 1 3




x1
x2
x3
x4

 =


−2
−1
0
1


Find T and c. Let x(0) = 0, the zero vector, and find the first 3 iterations using Jacobi’s
iterative method.

Solution:

D =


4 0 0 0
0 4 0 0
0 0 5 0
0 0 0 3

 L =


0 0 0 0
−1 0 0 0
1 1 0 0
−1 1 −1 0

 U =


0 −1 1 −1
0 0 1 1
0 0 0 −1
0 0 0 0



Then

D−1 =


1
4 0 0 0
0 1

4 0 0
0 0 1

5 0
0 0 0 1

3

 (L+ U) =


0 −1 1 −1
−1 0 1 1
1 1 0 −1
−1 1 −1 0


Then

T = D−1(L+ U) =


0 −1

4
1
4 −1

4
−1

4 0 1
4

1
4

1
5

1
5 0 −1

5
−1

3
1
3 −1

3 0

 c = D−1b =


−1

2
−1

4
0
1
3


The first three iterations are then

x(1) =


−0.500000000000000
−0.250000000000000

0.00000000000000
0.333333333333333

 x(2) =


−0.520833333333333
−0.041666666666667
−0.216666666666667

0.416666666666667

 x(3) =


−0.647916666666667
−0.069791666666667
−0.195833333333333

0.565277777777778


c. Continue Jacobi’s iterative method for 10 iterations. Give the value of x(10) Also, find

the exact solution, x∗, using Matlab’s linsolve program. Determine the error between the
10th iterate and the exact solution in the 1-norm, 2-norm, and ∞-norm, i.e., find

‖x(10) − x∗‖1 and ‖x(10) − x∗‖2 and ‖x(10) − x∗‖∞.

Using

1 function xout = jacobihw(n)
2 %using the Jacobian from question 4
3 % homework 5
4 T = [0 -1/4 1/4 -1/4 ; -1/4 0 1/4 1/4; 1/5 1/5 0 -1/5; -1/3 1/3 -1/3 0];
5 c = [-1/2;-1/4;0;1/3];



6

7 i = 0;
8 x0=[0; 0;0;0];
9 i=1;

10 for i=1:n
11 x0 = T*x0+c;
12 i=i+1
13

14 end
15 format long;
16 xout =x0;
17

18 end

the 10th iteration gives

x =


−0.749656471691995

0.038916625662596
−0.279350155049391

0.687092605276853

 linsolve x∗ =


−0.753424657534247

0.041095890410959
−0.280821917808219

0.691780821917808


And by changing this program slightly to include the linsolve we can find the 1-norm,

2-norm, and ∞-norm,
‖x(10) − x∗‖1 = 0.012107429990398 and

‖x(10) − x∗‖2 = 0.006564592925384 and

‖x(10) − x∗‖∞ = 0.004688216640955.

17 A=[4 1 -1 1 ;1 4 -1 -1;-1 -1 5 1; 1 -1 1 3];
18 b = [-2; -1; 0; 1];
19 xs =linsolve(A,b);
20 xs= x0-xs;
21 x1=norm(xs,1)
22 x2=norm(xs,2)
23 xinf=norm(xs, inf)
24 end


