
Spring 2018 Math 541

Homework – Numerical Linear Algebra Due Tues. 3/9/18

Be sure to include all MatLab programs used to obtain answers.

1. (10pts) (From the text, 2.6.) So, as always, it helps to visualize the matrix A you are dealing
with which looks like

A =


1 −1 −1 · · · −1
0 1 −1 · · · −1
...

. . .
. . .

...
0 · · · 0 1 −1
0 · · · 0 0 1


Then, in the 1-norm, we have that

||A~x||1 =

n−1∑
j=1

∣∣∣∣∣∣xj −
n∑

k=j+1

xk

∣∣∣∣∣∣+ |xn|

Remember, you want to find

||A||1 = max
~x6=0

||A~x||1
||~x||1

.

To motivate your thinking, don’t forget your friend the triangle inequality

|x− y| ≤ |x|+ |y|.

You should readily be able to show then that

||A~x||1 ≤
n∑

j=1

n∑
k=j

|xk| ≤ n ||~x||1

Then find an ~x to show you can get the inequality to become equality and thus show

||A||1 = n.

As for A−1, if you fuss properly you should be able to show that

∣∣∣∣A−1~x∣∣∣∣
1

=

n−1∑
j=1

∣∣∣∣∣∣xj +

n∑
k=j+1

2k−(j+1)xk

∣∣∣∣∣∣+ |xn| ≤ 2n−1 ||~x||1 .

Again, pick ~x so that the inequality becomes equality, which implies∣∣∣∣A−1∣∣∣∣
1

= 2n−1.

Then using the definition of condition number implies

κ(A) = n2n−1.

2. (5 pts) (From the text, 2.7.) Provide two test cases, which show your approach is correct.
Note that a good way to produce random N ×N matrices in MatLab is to use the command
randn(N). Use this for examples in this problem and the next.

3. (12 pts) In class we solved Ax = b using a Direct Method, specifically Gaussian elimination
with partial pivoting. This used a fair number of steps, which went up computationally like
n3, where n × n was the dimension of the matrix A. Often large matrices, especially sparse
matrices are solved iteratively. These iterative methods are particularly valuable when the
matrix is diagonal dominant, which is where the value of the diagonal elements of A exceed
the sum of the other elements in the row.

a. Suppose the matrix A is written:

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

an1 an2 · · · ann


and split this matrix into a diagonal matrix D, a lower triangular matrix L, and an upper
triangular matrix U . Write the matrix:

A =


a11 0 · · · 0

0 a22
. . .

...
...

. . .
. . . 0

0 · · · 0 ann

−


0 0 · · · 0

−a21
. . .

. . .
...

...
. . .

. . . 0
−an1 · · · −an,n−1 0

−


0 −a12 · · · −a1n
0

. . .
. . .

...
...

. . .
. . . −an−1,n

0 · · · 0 0


= D − L− U

Show that if D−1 exists (aii 6= 0 for 1 ≤ i ≤ n), then the equation

Ax = (D − L− U)x = b

has the solution
x = D−1(L+ U)x+D−1b.

b. If T = D−1(L+ U) and c = D−1b, then Jacobi’s iterative method satisfies the formula

x(k) = D−1(L+ U)x(k−1) +D−1b = Tx(k−1) + c.

Consider the system: 
4 1 −1 1
1 4 −1 −1
−1 −1 5 1
1 −1 1 3




x1
x2
x3
x4

 =


−2
−1
0
1


Find T and c. Let x(0) = 0, the zero vector, and find the first 3 iterations using Jacobi’s
iterative method.

c. Continue Jacobi’s iterative method for 10 iterations. Give the value of x(10) Also, find the
exact solution, x∗, using Matlab’s linsolve program. Determine the error between the 10th

iterate and the exact solution in the 1-norm, 2-norm, and ∞-norm, i.e., find

‖x(10) − x∗‖1 and ‖x(10) − x∗‖2 and ‖x(10) − x∗‖∞.

WeBWorK: There are 4 problems in WeBWorK where you perform LU -factorization. How-
ever, you do NOT use partial pivoting as we did in class for the most stable routine. There are
no written parts in these problems. They are computational to allow you to demonstrate that
you know the basics to LU -factorization.

