1. Consider $f(x)=x^{4}+7 x^{3}-2 x^{2}-4 x+3$. The derivative is a straight application of the power rule.

$$
f^{\prime}(x)=4 x^{3}+(7 \cdot 3) x^{2}-(2 \cdot 2) x-4=4 x^{3}+21 x^{2}-4 x-4 .
$$

2. Begin by writing $h(t)$ in powers of t.

$$
\begin{aligned}
h(t) & =t^{3}-5 t+\frac{1}{2}-\frac{1}{t^{2}}=t^{3}-5 t+\frac{1}{2}-t^{-2} \\
h^{\prime}(t) & =3 t^{2}-5-(-2) t^{-3}=3 t^{2}-5+\frac{2}{t^{3}} .
\end{aligned}
$$

3. Begin by writing $p(z)$ in powers of z.

$$
\begin{aligned}
p(z) & =z^{\frac{1}{3}}+4.7 z^{2}-7 \sqrt{z^{5}}=z^{\frac{1}{3}}+4.7 z^{2}-7 z^{\frac{5}{2}} \\
p^{\prime}(z) & =\frac{1}{3} z^{-\frac{2}{3}}+2 \cdot 4.7 z-\frac{5}{2} \cdot 7 z^{\frac{3}{2}} \\
& =\frac{1}{3} z^{-\frac{2}{3}}+9.4 z-\frac{35 \sqrt{z^{3}}}{2} .
\end{aligned}
$$

4. Begin by writing $q(w)$ in powers of w.

$$
\begin{aligned}
q(w) & =3 w^{-0.4}+2.1 w^{5}-\frac{2}{\sqrt{w}}=3 w^{-0.4}+2.1 w^{5}-2 w^{-\frac{1}{2}} \\
q^{\prime}(w) & =-0.4 \cdot 3 w^{-1.4}+5 \cdot 2.1 w^{4}-\frac{-1}{2} \cdot 2 w^{-\frac{3}{2}} \\
& =-1.2 w^{-1.4}+10.5 w^{4}+\frac{1}{\sqrt{w^{3}}} .
\end{aligned}
$$

5. Begin by writing $g(x)$ in powers of x.

$$
\begin{aligned}
g(x) & =A-\frac{B}{x^{3}}+\frac{C}{\sqrt{x}}-D x^{4}=A-B x^{-3}+C x^{-\frac{1}{2}}-D x^{4} \\
g^{\prime}(x) & =-(-3) \cdot B x^{-4}+\left(-\frac{1}{2}\right) \cdot C x^{-\frac{3}{2}}-4 \cdot D x^{3} \\
& =\frac{3 B}{x^{4}}-\frac{C}{2 \sqrt{x^{3}}}-4 D x^{3} .
\end{aligned}
$$

6. a. The child's height satisfies $h(a)=6.46 a+72.34$, so by the power rule:

$$
\frac{d h}{d a}=h^{\prime}(a)=6.46 \mathrm{~cm} / \mathrm{yr},
$$

which is constant. The growth rate is $6.46 \mathrm{~cm} / \mathrm{yr}$ at all ages, including ages 2 and 6 .
b. Since the growth rate is constant, the predicted height at age 11 is $135+6.46=141.46 \mathrm{~cm}$.
7. Since $N=3 A^{\frac{1}{3}}$, the derivative is

$$
N^{\prime}(A)=3\left(\frac{1}{3}\right) A^{-\frac{2}{3}}=A^{-\frac{2}{3}}
$$

For the three different areas,

$$
\begin{aligned}
N^{\prime}(64) & =64^{-\frac{2}{3}}=\frac{1}{\sqrt[3]{64}}{ }^{2}=\frac{1}{4^{2}}=\frac{1}{16} \\
N^{\prime}(125) & =125^{-\frac{2}{3}}=\frac{1}{\sqrt[3]{125}^{2}}=\frac{1}{5^{2}}=\frac{1}{25} \\
N^{\prime}(1000) & =1000^{-\frac{2}{3}}=\frac{1}{\sqrt[3]{1000}^{2}}=\frac{1}{10^{2}}=\frac{1}{100}
\end{aligned}
$$

The graph of the derivative is shown below to the left.

8. a. The height of the ball satisfies $h(t)=128+32 t-16 t^{2}$, so the velocity is

$$
v(t)=h^{\prime}(t)=32-32 t
$$

The maximum height occurs when $v(t)=0$. But $v(t)=32-32 t=0$ implies $t=1$. Thus, $h(1)=128+32(1)-16(1)^{2}=144 \mathrm{ft}$ is the maximum height of the ball. At $t=2$ the velocity is $v(2)=32-32(2)=-32 \mathrm{ft} / \mathrm{sec}$. At $t=4$ the velocity is $v(4)=32-32(4)=-96 \mathrm{ft} / \mathrm{sec}$.
b. The graph of the height is shown above to the right. The ball hits the ground when $h(t)=0$, so

$$
h(t)=128+32 t-16 t^{2}=-16\left(t^{2}-2 t-8\right)=-16(t-4)(t+2)=0
$$

It follows that $t=-2$ or $t=4$. Thus, the ball hits the ground at $t=4$.
9. a. Since $h(t)=-16 t^{2}+V t+12$, the velocity is $v(t)=h^{\prime}(t)=-32 t+V$ by the power rule.
b. The velocity is zero when $-32 t_{\max }+V=0$ or $t_{\max }=\frac{V}{32}$.
c. Substituting $t_{\max }=\frac{V}{32}$ into the equation for the height of the cat gives

$$
h\left(\frac{V}{32}\right)=-16\left(\frac{V}{32}\right)^{2}+V\left(\frac{V}{32}\right)+12=16
$$

which gives

$$
-\frac{V^{2}}{64}+\frac{V^{2}}{32}=4 \quad \text { or } \quad \frac{\mathrm{V}^{2}}{64}=4
$$

Thus, the initial velocity needs to be $V=16 \mathrm{ft} / \mathrm{sec}$, so $v(t)=-32 t+16$. The velocity at $t=1$ sec is $v(1)=-32(1)+16=-16 \mathrm{ft} / \mathrm{sec}$.
d. With this information, when the cat hits the ground,

$$
h(t)=-16 t^{2}+16 t+12=-4\left(4 t^{2}-4 t-3\right)=-4(2 t-3)(2 t+1)=0 .
$$

It follows that either $t=\frac{3}{2}$ or $-\frac{1}{2}$ with the latter not being appropriate. Thus, the cat hits the ground at $t=\frac{3}{2} \mathrm{sec}$ with a velocity of $v(1.5)=-32(1.5)+16=-32 \mathrm{ft} / \mathrm{sec}$.
10. a. The population growth is zero at

$$
g\left(P_{e}\right)=0.04 P_{e}\left(1-\frac{P_{e}}{800}\right)=0
$$

$P_{e}=0$ (extinction equilibrium) and $P_{e}=800$ (carrying capacity).
b. Begin by writing $g(P)$ in powers of x.

$$
\begin{aligned}
g(P) & =0.04 P-\frac{0.04 P^{2}}{800} \\
g^{\prime}(P) & =0.04-\frac{0.04 \cdot 2 P}{800} \\
& =0.04-0.0001 P
\end{aligned}
$$

This has a maximum where $g^{\prime}=0$ at $P=400$ with $g(400)=8$ individuals/day. This means that the highest growth occurs when there are 400 insects, producing 8 new individuals/day. The graph is shown below on the left.

11. a. Since the body temperature satisfies $T(t)=-0.01 t^{3}+0.285 t^{2}-1.80 t+15$, the power rule gives the rate of change of body temperature as

$$
T^{\prime}(t)=-0.01 \cdot 3 t^{2}+0.285 \cdot 2 t-1.8=-0.03 t^{2}+0.57 t-1.8
$$

b. At midnight, $T^{\prime}(0)=-0.03(0)^{2}+0.57(0)-1.8=-1.8^{\circ} \mathrm{C} / \mathrm{hr}$.

At $4 \mathrm{AM}, T^{\prime}(4)=-0.03(4)^{2}+0.57(4)-1.8=0^{\circ} \mathrm{C} / \mathrm{hr}$.
At $8 \mathrm{AM}, T^{\prime}(8)=-0.03(8)^{2}+0.57(8)-1.8=0.84^{\circ} \mathrm{C} / \mathrm{hr}$.
At noon, $T^{\prime}(12)=-0.03(12)^{2}+0.57(12)-1.8=0.72^{\circ} \mathrm{C} / \mathrm{hr}$.
At $4 \mathrm{PM}, T^{\prime}(16)=-0.03(16)^{2}+0.57(16)-1.8=-0.36^{\circ} \mathrm{C} / \mathrm{hr}$.
The fastest increase in body temperature is at 8 AM , while the most rapid cooling is at midnight (of the given times). The graph is shown above to the right.

