1. Consider the function $f(x)=\frac{x^{3}-\ln (x)}{1-x^{2}}+\frac{2}{x^{2}}=\frac{x^{3}-\ln (x)}{1-x^{2}}+2 x^{-2}$. Applying the quotient rule to the first part and the power rule to the second, we have:

$$
\begin{aligned}
f^{\prime}(x) & =\frac{\left(1-x^{2}\right)\left(3 x^{2}-\frac{1}{x}\right)-\left(x^{3}-\ln (x)\right)(-2 x)}{\left(1-x^{2}\right)^{2}}-2 \cdot 2 x^{-3} \\
& =\frac{\left(1-x^{2}\right)\left(3 x^{2}-\frac{1}{x}\right)+2 x\left(x^{3}-\ln (x)\right)}{\left(1-x^{2}\right)^{2}}-4 x^{-3} .
\end{aligned}
$$

2. Consider the function $f(x)=\frac{x^{2}-e^{-x}}{3 x+1}+x e^{-x}$. Applying the product and quotient rule to this function, we have:

$$
\begin{aligned}
f^{\prime}(x) & =\frac{(3 x+1)\left(2 x+e^{-x}\right)-\left(x^{2}-e^{-x}\right)(3)}{(3 x+1)^{2}}+\left(-x e^{-x}+1 \cdot e^{-x}\right) \\
& =\frac{(3 x+1)\left(2 x+e^{-x}\right)-3\left(x^{2}-e^{-x}\right)}{(3 x+1)^{2}}+(1-x) e^{-x} .
\end{aligned}
$$

3. Consider the function $f(x)=\frac{\sqrt{x}}{2+x}-\frac{1}{e^{3 x}}=\frac{x^{\frac{1}{2}}}{2+x}-e^{-3 x}$. From our rules of differentiation, we have

$$
\begin{aligned}
f^{\prime}(x) & =\frac{(2+x)\left(\frac{1}{2} x^{-\frac{1}{2}}\right)-(1)\left(x^{\frac{1}{2}}\right)}{(2+x)^{2}}-(-3) e^{-3 x} \\
& =\frac{2+x-2 x}{2(2+x)^{2} \sqrt{x}}+3 e^{-3 x}=\frac{2-x}{2(2+x)^{2} \sqrt{x}}+3 e^{-3 x}
\end{aligned}
$$

4. Consider the function $f(x)=\frac{8 e^{-2 x}}{12+\cos (2 x)}$. The quotient rule gives the derivative

$$
\begin{aligned}
f^{\prime}(x) & =\frac{(12+\cos (2 x))\left(8(-2) e^{-2 x}\right)-\left(8 e^{-2 x}\right)(-2 \sin (2 x))}{(12+\cos (2 x))^{2}} \\
& =\frac{16(\sin (2 x)-\cos (2 x)-12) e^{-2 x}}{(12+\cos (2 x))^{2}} .
\end{aligned}
$$

5. Consider the function $y(x)=\frac{x^{2}}{x+1}$. The quotient rule finds the derivative

$$
y^{\prime}(x)=\frac{(x+1)(2 x)-(1) x^{2}}{(x+1)^{2}}=\frac{x(x+2)}{(x+1)^{2}}
$$

The x-intercept occurs where $y=0$, which is $x=0$, so the x and y-intercept is the origin, $(0,0)$. There is no horizontal asymptote, because the exponent in the numerator is higher than that in the denominator. The vertical asymptote occurs when the denominator is zero, or $x+1=0$ so $x=-1$. At the critical points, $y^{\prime}=0=\frac{x(x+2)}{(x+1)^{2}}$, so $x(x+2)=0$. Thus, $x_{1 c}=-2$ and $x_{2 c}=0$. The y values are $y_{1 c}=\frac{(-2)^{2}}{-2+1}=-4$ and $y_{2 c}=\frac{0^{2}}{0+1}=0$. It follows that $(-2,-4)$ is a maximum and $(0,0)$ is a minimum. The graph appears below to the left.

6. Consider the function $y(x)=\frac{e^{x}}{x+1}$. The quotient rule finds the derivative

$$
y^{\prime}=\frac{(x+1) e^{x}-(1) e^{x}}{(x+1)^{2}}=\frac{x e^{x}}{(x+1)^{2}} .
$$

The x-intercept occurs when $y=0$. Since the exponential function is not zero, there are no x-intercepts. The y-intercept occurs when $x=0$ or $y(0)=\frac{e^{0}}{0+1}=1$, so the y-intercept is $(0,1)$. Since the denominator $x+1=0$ when $x=-1$, this is a vertical asymptote. From the limit below,

$$
\lim _{x \rightarrow-\infty} \frac{e^{x}}{x+1}=0
$$

so there is a horizontal asymptote to the left at $y=0$. The critical point satisfies $y^{\prime}=0$, so $0=x e^{x}$ or $x_{c}=0$. Since $y\left(x_{c}\right)=1$, we have $(0,1)$ is a minimum. The graph appears above on the right.
7. Consider the function $y(x)=\frac{x^{2}-2 x+2}{x-1}$. The quotient rule finds the derivative

$$
y^{\prime}=\frac{(x-1)(2 x-2)-(1)\left(x^{2}-2 x+2\right)}{(x-1)^{2}}=\frac{x(x-2)}{(x-1)^{2}} .
$$

The x-intercept occurs when $y=0$, but $x^{2}-2 x+2=0$ has no real solution, so there is no x intercept. The y-intercept occurs when $x=0$, so $y(0)=-2$. There is no horizontal asymptote, as the highest exponent in the numerator is larger than that in the denominator. There is a vertical asymptote where the denominator is zero, or $x=1$. The critical points satisfy $y^{\prime}=0$, so $x(x-2)=0$. It follows that $x_{1 c}=0$ and $y\left(x_{1 c}\right)=-2$, which gives a maximum at $(0,-2)$. Similarly, $x_{2 c}=2$ and $y\left(x_{2 c}\right)=2$, which gives a minimum at $(2,2)$. The graph is shown below on the left.

8. Consider the function $y=\frac{1}{\sin (3 x)}$. Applying the quotient rule,

$$
y^{\prime}(x)=\frac{-3 \cos (3 x)}{\sin ^{2}(3 x)} .
$$

The period is given by $T=\frac{2 \pi}{\omega}=\frac{2 \pi}{3}$. Critical points occur when $y^{\prime}=0$ or $\cos (3 x)=0$, which occurs when $3 x=\frac{\pi}{2}$ or $\frac{3 \pi}{2}$. Then $y\left(\frac{\pi}{6}\right)=\frac{1}{\sin \left(\frac{3 \pi}{6}\right)}=1$ and $y\left(\frac{\pi}{2}\right)=\frac{1}{\sin \left(\frac{3 \pi}{2}\right)}=-1 .\left(\frac{\pi}{6}, 1\right)$ is a minimum, and $\left(\frac{\pi}{2},-1\right)$ is a maximum. The vertical asymptotes occur where $\sin (3 x)=0$ or $x=0, \frac{\pi}{3}, \frac{2 \pi}{3}$, and π. The curve of the function appears above on the right.
9. a. Consider the function $y(p)=\frac{p^{4}}{0.0625+p^{4}}$. The derivative satisfies

$$
y^{\prime}(p)=\frac{\left(0.0625+p^{4}\right)\left(4 p^{3}\right)-\left(p^{4}\right)\left(4 p^{3}\right)}{\left(0.0625+p^{4}\right)^{2}}=\frac{0.25 p^{3}}{\left(0.0625+p^{4}\right)^{2}} .
$$

The second derivative can be found with a second application of the rule:

$$
\begin{aligned}
y^{\prime}(p) & =\frac{0.25 p^{3}}{\left(0.0625^{2}+.125 p^{4}+p^{8}\right)} \\
y^{\prime \prime}(p) & =\frac{\left(0.0625+p^{4}\right)^{2}\left(0.25 \cdot 3 p^{2}\right)-\left(0.25 p^{3}\right)\left(0.125 \cdot 4 p^{3}+8 p^{7}\right)}{\left(0.0625+p^{4}\right)^{4}} \\
& =\frac{\left(0.0625+p^{4}\right)^{2}\left(0.75 p^{2}\right)-0.25 p^{3}\left(8 p^{3}\right)\left(0.0625+p^{4}\right)}{\left(0.0625+p^{4}\right)^{4}} \\
& =\frac{0.25 p^{2}\left(0.1875-5 p^{4}\right)}{\left(0.0625+p^{4}\right)^{3}} .
\end{aligned}
$$

When $y^{\prime \prime}(p)=0$, either $p=0$ or $5 p^{4}=0.1875$, giving $p_{i} \approx 0.44056$ for $p>0$. At this point, $y\left(p_{i}\right)=\frac{0.0375}{0.0625+0.0375}=0.375$, and $y^{\prime}\left(p_{i}\right)=\frac{0.25(0.44056)^{3}}{(0.0625+0.0325)^{2}}=2.13041$.
b. There is a y-intercept when $p=0$, and $y(0)=0$, so there is only one intercept at $(0,0)$. There is a horizontal asymptote at $y=\frac{p^{4}}{p^{4}}=1$. There is no vertical asymptote. The graph of $y(p)$ is shown below on the left. The graph of $y^{\prime}(p)$ is shown below on the right.
c. The function reaches a 90% saturation when $y(p)=0.9=\frac{p^{4}}{0.0625+p^{4}}$. Thus,

$$
0.9\left(0.0625+p^{4}\right)=p^{4} \quad \text { or } \quad p^{4}=0.9 \cdot 0.625=0.5625 \quad \text { or } \quad p=\sqrt[4]{0.5625} \approx 0.866025
$$

This curve is similar in shape to the O_{2} dissociation curve, but the point of inflection occurs at $p=21.2$ torr, which is about 50 times higher than the point of inflection for the CO dissociation curve, which implies that hemoglobin binds CO much more strongly than O_{2}.

10. a. The specific function is $R(L)=\frac{10 L^{2}}{1+L^{2}}$. Differentiating this rate function using the quotient rule gives

$$
\begin{aligned}
R^{\prime}(L) & =\frac{\left(1+L^{2}\right) 10(2 L)-\left(10 L^{2}\right)(2 L)}{\left(1+L^{2}\right)^{2}} \\
& =\frac{20 L}{\left(1+L^{2}\right)^{2}}=\frac{20 L}{\left(1+2 L^{2}+L^{4}\right)}
\end{aligned}
$$

The second derivative satisfies:

$$
\begin{aligned}
R^{\prime \prime}(L) & =\frac{\left(1+2 L^{2}+L^{4}\right)(20)-(20 L)\left(2 \cdot 2 L+4 L^{3}\right)}{\left(1+L^{2}\right)^{4}} \\
& =\frac{20\left(1+L^{2}\right)\left(1-3 L^{2}\right)}{\left(1+L^{2}\right)^{4}}=\frac{20\left(1-3 L^{2}\right)}{\left(1+L^{2}\right)^{3}}
\end{aligned}
$$

At the point of inflection, the second derivative is 0 , when the numerator of the above expression is zero. Thus, $1-3 L^{2}=0$ or $L=\frac{1}{\sqrt{3}} \approx 0.5774$. (Note we take only the positive square root because of the domain.) $R\left(\frac{1}{\sqrt{3}}\right)=\frac{10\left(\frac{1}{3}\right)}{1+\left(\frac{1}{3}\right)}=\frac{10}{4}=2.5$. Thus, there is a point of inflection at $(0.5774,2.5)$. At this point, $R^{\prime}(0.5774)=\frac{20 L}{\left(1+L^{2}\right)^{2}}=\frac{20 \cdot 0.5774}{\left(1+0.5774^{2}\right)^{2}}=6.495$.
b. At the R-intercept, $L=0$, so there is an intercept at $(0,0)$. Since the highest power of L in the numerator and denominator is two, there is a horizontal asymptote at $y=\frac{10}{1}=10$, using the leading coefficients of the highest powers. There is no vertical asymptote. The graph of $R(L)$ is shown below to the left.
c. The only intercept for the derivative is $(0,0)$. The power of the denominator is greater than the power of L in the numerator, so the horizontal asymptote is $R^{\prime}(L)=0$. A sketch of $R^{\prime}(L)$ is shown below to the right. Since the second derivative is zero at $L=0.5774$, there is a maximum for $R^{\prime}(L)$ at $(0.5774,6.495)$. Clearly, the L-value of the maximum matches the L-value for the point of inflection.

11. a. We consider the Beverton-Holt (Hassell's) model, which is given by $H(P)=\frac{5 P}{1+0.004 P}$. Differentiating using the quotient rule,

$$
H^{\prime}(P)=5 \frac{(1+0.004 P)-P(0.004)}{(1+0.004 P)^{2}}=\frac{5}{(1+0.004 P)^{2}}=\frac{5}{1+0.008 P+0.000016 P^{2}} .
$$

The second derivative is given by

$$
H^{\prime \prime}(P)=\frac{0-5(0.008+2 \cdot 0.000016 P)}{(1+0.004 P)^{4}}=\frac{-0.04}{(1+0.004 P)^{3}} .
$$

Note that $H^{\prime \prime}(P)$ is negative for $P \geq 0$.
b. The P and H-intercept occurs when $P=0$ and $H(0)=0$. Since the leading powers of the numerator and denominator are the same (one), there is a horizontal asymptote at $H=\frac{5}{0.004}=1250$. There is no vertical asymptote (for $P \geq 0$). A graph of $H(P)$ is shown below on the left.
c. Equilibria are found by solving

$$
P_{e}=\frac{5 P_{e}}{1+0.004 P_{e}}
$$

This gives $P_{e}\left(1+0.004 P_{e}\right)=5 P_{e}$, so there is the extinction equilibrium, $P_{e}=0$, or $1+0.004 P_{e}=5$. This last equation gives the carrying capacity equilibrium, $P_{e}=1000$.

12. a. Consider the logistic growth model, $Y(t)=\frac{1000}{1+19 e^{-0.1 t}}$. The derivative comes from the quotient rule,

$$
Y^{\prime}(t)=1000 \frac{\left(0+1.9 e^{-0.1 t}\right)}{\left(1+19 e^{-0.1 t}\right)^{2}}=\frac{1900 e^{-0.1 t}}{\left(1+19 e^{-0.1 t}\right)^{2}}=\frac{1900 e^{-0.1 t}}{\left(1+38 e^{-0.1 t}+361 e^{-0.2 t}\right)} .
$$

The second derivative is again found by the quotient rule

$$
\begin{aligned}
Y^{\prime \prime}(t) & =\frac{-190\left(1+38 e^{-0.1 t}+361 e^{-0.2 t}\right) e^{-0.1 t}-1900 e^{-0.1 t}\left(-3.8 e^{-0.1 t}-72.2 e^{-0.2 t}\right)}{\left(1+19 e^{-0.1 t}\right)^{4}} \\
& =\frac{-190 e^{-0.1 t}\left(1+19 e^{-0.1 t}\right)\left(1-19 e^{-0.1 t}\right)}{\left(1+19 e^{-0.1 t}\right)^{4}} \\
& =\frac{190 e^{-0.1 t}\left(19 e^{-0.1 t}-1\right)}{\left(1+19 e^{-0.1 t}\right)^{3}} .
\end{aligned}
$$

The second derivative is zero when $19 e^{-0.1 t}-1=0 \quad$ or $\quad e^{0.1 t}=19$. or $\quad t=10 \ln (19) \approx$ 29.44. Then $Y(29.44)=\frac{1000}{1+19 e^{-2.944}} \approx 500$. Thus, there is a point of inflection at $(29.44,500)$.
b. There is a Y-intercept at $t=0$, when $Y(0)=\frac{1000}{1+19}=50$. The only intercept is $(0,50)$. Since $\lim _{t \rightarrow \infty} e^{-0.1 t} \rightarrow 0$,

$$
\lim _{t \rightarrow+\infty} Y(t) \rightarrow 1000
$$

which gives a horizontal asymptote of $Y=1000$. A sketch of $Y(t)$ is above to the right.
c. Since the population starts at 50 , it doubles when it reaches 100 . Solving $Y(t)=\frac{1000}{1+19 e^{-0.1 t}}=$ 100 gives $1+19 e^{-0.1 t}=10$, so $e^{0.1 t}=\frac{19}{9}$. Thus, this population doubles when $t=10 \ln \left(\frac{19}{9}\right) \approx$ 7.47 hr .
d. The Malthusian growth model doubles when it reaches 100 . Solving $100=50 e^{0.1 t}$ gives $e^{0.1 t}=2$ or $t=10 \ln (2)$. Thus, the doubling time for the Malthusian growth model is $t \approx 6.93 \mathrm{hr}$, which is less than for the logistic growth model.

