
Spring 2015 Solutions Quotient Rule.

1. Consider the function f(x) = x3−ln(x)
1−x2 + 2

x2 = x3−ln(x)
1−x2 + 2x−2. Applying the quotient rule to

the first part and the power rule to the second, we have:

f ′(x) =
(1− x2)(3x2 − 1

x
)−

(

x3 − ln(x)
)

(−2x)

(1− x2)2
− 2 · 2x−3

=
(1− x2)(3x2 − 1

x
) + 2x

(

x3 − ln(x)
)

(1− x2)2
− 4x−3.

2. Consider the function f(x) = x2−e−x

3x+1 +xe−x. Applying the product and quotient rule to this
function, we have:

f ′(x) =
(3x+ 1)(2x + e−x)− (x2 − e−x)(3)

(3x+ 1)2
+ (−xe−x + 1 · e−x)

=
(3x+ 1)(2x + e−x)− 3(x2 − e−x)

(3x+ 1)2
+ (1− x)e−x.

3. Consider the function f(x) =
√
x

2+x
− 1

e3x
= x

1

2

2+x
− e−3x. From our rules of differentiation, we

have

f ′(x) =
(2 + x)

(

1
2x

− 1

2

)

− (1)(x
1

2 )

(2 + x)2
− (−3)e−3x

=
2 + x− 2x

2(2 + x)2
√
x
+ 3e−3x =

2− x

2(2 + x)2
√
x
+ 3e−3x

4. Consider the function f(x) = 8e−2x

12+cos(2x) . The quotient rule gives the derivative

f ′(x) =
(12 + cos(2x))(8(−2)e−2x)−

(

8e−2x
)

(−2 sin(2x))

(12 + cos(2x))2

=
16 (sin(2x)− cos(2x)− 12) e−2x

(12 + cos(2x))2
.

5. Consider the function y(x) = x2

x+1 . The quotient rule finds the derivative

y ′(x) =
(x+ 1)(2x) − (1)x2

(x+ 1)2
=

x(x+ 2)

(x+ 1)2

The x-intercept occurs where y = 0, which is x = 0, so the x and y-intercept is the origin, (0, 0).
There is no horizontal asymptote, because the exponent in the numerator is higher than that in
the denominator. The vertical asymptote occurs when the denominator is zero, or x+1 = 0 so
x = −1. At the critical points, y ′ = 0 = x(x+2)

(x+1)2
, so x(x+ 2) = 0. Thus, x1c = −2 and x2c = 0.

The y values are y1c =
(−2)2

−2+1 = −4 and y2c =
02

0+1 = 0. It follows that (−2,−4) is a maximum
and (0, 0) is a minimum. The graph appears below to the left.
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6. Consider the function y(x) = ex

x+1 . The quotient rule finds the derivative

y ′ =
(x+ 1)ex − (1)ex

(x+ 1)2
=

xex

(x+ 1)2
.

The x-intercept occurs when y = 0. Since the exponential function is not zero, there are no
x-intercepts. The y-intercept occurs when x = 0 or y(0) = e0

0+1 = 1, so the y-intercept is (0, 1).
Since the denominator x + 1 = 0 when x = −1, this is a vertical asymptote. From the limit
below,

lim
x→−∞

ex

x+ 1
= 0,

so there is a horizontal asymptote to the left at y = 0. The critical point satisfies y ′ = 0, so
0 = xex or xc = 0. Since y(xc) = 1, we have (0, 1) is a minimum. The graph appears above on
the right.

7. Consider the function y(x) = x2−2x+2
x−1 . The quotient rule finds the derivative

y ′ =
(x− 1)(2x − 2)− (1)(x2 − 2x+ 2)

(x− 1)2
=

x(x− 2)

(x− 1)2
.

The x-intercept occurs when y = 0, but x2 − 2x+ 2 = 0 has no real solution, so there is no x-
intercept. The y-intercept occurs when x = 0, so y(0) = −2. There is no horizontal asymptote,
as the highest exponent in the numerator is larger than that in the denominator. There is a
vertical asymptote where the denominator is zero, or x = 1. The critical points satisfy y ′ = 0,
so x(x − 2) = 0. It follows that x1c = 0 and y(x1c) = −2, which gives a maximum at (0,−2).
Similarly, x2c = 2 and y(x2c) = 2, which gives a minimum at (2, 2). The graph is shown below
on the left.
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8. Consider the function y = 1
sin(3x) . Applying the quotient rule,

y ′(x) =
−3 cos(3x)

sin2(3x)
.

The period is given by T = 2π
ω

= 2π
3 . Critical points occur when y ′ = 0 or cos(3x) = 0, which

occurs when 3x = π
2 or 3π

2 . Then y(π6 ) = 1
sin( 3π

6
)
= 1 and y(π2 ) = 1

sin( 3π
2
)
= −1. (π6 , 1) is a

minimum, and (π2 ,−1) is a maximum. The vertical asymptotes occur where sin(3x) = 0 or
x = 0, π

3 ,
2π
3 , and π. The curve of the function appears above on the right.

9. a. Consider the function y(p) = p4

0.0625+p4
. The derivative satisfies

y ′(p) =
(0.0625 + p4)(4p3)− (p4)(4p3)

(0.0625 + p4)2
=

0.25p3

(0.0625 + p4)2
.

The second derivative can be found with a second application of the rule:

y ′(p) =
0.25p3

(0.06252 + .125p4 + p8)

y ′′(p) =
(0.0625 + p4)2(0.25 · 3p2)− (0.25p3)(0.125 · 4p3 + 8p7)

(0.0625 + p4)4

=
(0.0625 + p4)2(0.75p2)− 0.25p3(8p3)(0.0625 + p4)

(0.0625 + p4)4

=
0.25p2(0.1875 − 5p4)

(0.0625 + p4)3
.

When y ′′(p) = 0, either p = 0 or 5p4 = 0.1875, giving pi ≈ 0.44056 for p > 0. At this point,

y(pi) =
0.0375

0.0625+0.0375 = 0.375, and y ′(pi) =
0.25(0.44056)3

(0.0625+0.0325)2 = 2.13041.

b. There is a y-intercept when p = 0, and y(0) = 0, so there is only one intercept at (0,0).

There is a horizontal asymptote at y = p4

p4
= 1. There is no vertical asymptote. The graph of

y(p) is shown below on the left. The graph of y ′(p) is shown below on the right.

c. The function reaches a 90% saturation when y(p) = 0.9 = p4

0.0625+p4
. Thus,

0.9(0.0625 + p4) = p4 or p4 = 0.9 · 0.625 = 0.5625 or p =
4
√
0.5625 ≈ 0.866025.

This curve is similar in shape to the O2 dissociation curve, but the point of inflection occurs at
p = 21.2 torr, which is about 50 times higher than the point of inflection for the CO dissociation
curve, which implies that hemoglobin binds CO much more strongly than O2.
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10. a. The specific function is R(L) = 10L2

1+L2 . Differentiating this rate function using the quotient
rule gives

R ′(L) =
(1 + L2)10(2L) − (10L2)(2L)

(1 + L2)2

=
20L

(1 + L2)2
=

20L

(1 + 2L2 + L4)
.

The second derivative satisfies:

R ′′(L) =
(1 + 2L2 + L4)(20) − (20L)(2 · 2L+ 4L3)

(1 + L2)4

=
20(1 + L2)(1− 3L2)

(1 + L2)4
=

20(1 − 3L2)

(1 + L2)3

At the point of inflection, the second derivative is 0, when the numerator of the above expression
is zero. Thus, 1 − 3L2 = 0 or L = 1√

3
≈ 0.5774. (Note we take only the positive square root

because of the domain.) R( 1√
3
) =

10( 1
3
)

1+( 1
3
)
= 10

4 = 2.5. Thus, there is a point of inflection at

(0.5774, 2.5). At this point, R ′(0.5774) = 20L
(1+L2)2

= 20·0.5774
(1+0.57742)2

= 6.495.

b. At the R-intercept, L = 0, so there is an intercept at (0,0). Since the highest power of L in
the numerator and denominator is two, there is a horizontal asymptote at y = 10

1 = 10, using
the leading coefficients of the highest powers. There is no vertical asymptote. The graph of
R(L) is shown below to the left.

c. The only intercept for the derivative is (0,0). The power of the denominator is greater than
the power of L in the numerator, so the horizontal asymptote is R ′(L) = 0. A sketch of R ′(L) is
shown below to the right. Since the second derivative is zero at L = 0.5774, there is a maximum
for R ′(L) at (0.5774, 6.495). Clearly, the L-value of the maximum matches the L-value for the
point of inflection.
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Problem 10b Induction Derivative

11. a. We consider the Beverton-Holt (Hassell’s) model, which is given by H(P ) = 5P
1+0.004P .

Differentiating using the quotient rule,

H ′(P ) = 5
(1 + 0.004P ) − P (0.004)

(1 + 0.004P )2
=

5

(1 + 0.004P )2
=

5

1 + 0.008P + 0.000016P 2
.



The second derivative is given by

H ′′(P ) =
0− 5(0.008 + 2 · 0.000016P )

(1 + 0.004P )4
=

−0.04

(1 + 0.004P )3
.

Note that H ′′(P ) is negative for P ≥ 0.

b. The P and H-intercept occurs when P = 0 and H(0) = 0. Since the leading powers
of the numerator and denominator are the same (one), there is a horizontal asymptote at
H = 5

0.004 = 1250. There is no vertical asymptote (for P ≥ 0). A graph of H(P ) is shown
below on the left.

c. Equilibria are found by solving

Pe =
5Pe

1 + 0.004Pe

.

This gives Pe(1 + 0.004Pe) = 5Pe, so there is the extinction equilibrium, Pe = 0, or
1 + 0.004Pe = 5. This last equation gives the carrying capacity equilibrium, Pe = 1000.
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Problem 11 Beverton-Holt
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Problem 12 Logistic Growth

12. a. Consider the logistic growth model, Y (t) = 1000
1+19e−0.1t . The derivative comes from the

quotient rule,

Y ′(t) = 1000
(0 + 1.9e−0.1t)

(1 + 19e−0.1t)2
=

1900e−0.1t

(1 + 19e−0.1t)2
=

1900e−0.1t

(1 + 38e−0.1t + 361e−0.2t)
.

The second derivative is again found by the quotient rule

Y ′′(t) =
−190(1 + 38e−0.1t + 361e−0.2t)e−0.1t − 1900e−0.1t(−3.8e−0.1t − 72.2e−0.2t)

(1 + 19e−0.1t)4

=
−190e−0.1t(1 + 19e−0.1t)(1 − 19e−0.1t)

(1 + 19e−0.1t)4

=
190e−0.1t(19e−0.1t − 1)

(1 + 19e−0.1t)3
.

The second derivative is zero when 19e−0.1t − 1 = 0 or e0.1t = 19. or t = 10 ln(19) ≈
29.44. Then Y (29.44) = 1000

1+19e−2.944 ≈ 500. Thus, there is a point of inflection at (29.44, 500).

b. There is a Y -intercept at t = 0, when Y (0) = 1000
1+19 = 50. The only intercept is (0, 50). Since

limt→∞ e−0.1t → 0,
lim

t→+∞
Y (t) → 1000,



which gives a horizontal asymptote of Y = 1000. A sketch of Y (t) is above to the right.

c. Since the population starts at 50, it doubles when it reaches 100. Solving Y (t) = 1000
1+19e−0.1t =

100 gives 1 + 19e−0.1t = 10, so e0.1t = 19
9 . Thus, this population doubles when t = 10 ln(199 ) ≈

7.47 hr.

d. The Malthusian growth model doubles when it reaches 100. Solving 100 = 50e0.1t gives
e0.1t = 2 or t = 10 ln(2). Thus, the doubling time for the Malthusian growth model is t ≈ 6.93 hr,
which is less than for the logistic growth model.


