
Spring 2015 Complete Solutions Linear Discrete Models

1. Let yn+1 = 0.7yn + 6 with y0 = 10. Then

y1 = 0.7y0 + 6 = 0.7(10) + 6 = 13

y2 = 0.7y1 + 6 = 0.7(13) + 6 = 15.1

y3 = 0.7y2 + 6 = 0.7(15.1) + 6 = 16.57

Equilibrium occurs when yn+1 = yn = ye, so ye = 0.7ye + 6 or 0.3ye = 6. Thus, ye = 20. The
solution is approaching the equilibrium, so it is stable.

2. Let zn+1 = 1.2zn − 20 with z0 = 50. Then

z1 = 1.2z0 − 20 = 1.2(50) − 20 = 40

z2 = 1.2z1 − 20 = 1.2(40) − 20 = 28

z3 = 1.2z2 − 20 = 1.2(28) − 20 = 13.6

Equilibrium occurs when zn+1 = zn = ze, so ze = 1.2ze − 20 or 0.2ze = 20. Thus, ze = 100.
The solution is moving away from the equilibrium, so it is unstable.

3. This breathing model is given by cn+1 = 0.9cn + 0.1(5.2), with c0 = 100. Then

c1 = 0.9c0 + 0.52 = 0.9(100) + 0.52 = 90.52ppm

c2 = 0.9c1 + 0.52 = 0.9(90.52) + 0.52 = 81.99ppm

c3 = 0.9c2 + 0.52 = 0.9(81.99) + 0.52 = 74.31ppm

Equilibrium occurs when cn+1 = cn = ce, so ce = 0.9ce + 0.52 or 0.1ce = 0.52ppm. Thus,
ce = 5.2ppm. The solution is approaching the equilibrium, so it is stable.

4. From the mathematical model cn+1 = (1− q)cn+ qγ with c0 = 0.68 and c1 = 0.694, it follows
that

0.694 = (1− q)0.68 + 0.78q.

Therefore, it follows that

(0.78 − 0.68)q = 0.694 − 0.68 or q = 0.14.

The functional reserve capacity, given that Vi = 400 ml, satisfies

Vr =
(1− q)Vi

q
=

0.86(400)

0.14
= 2457 ml.

Thus, the values cn+1 = (1− 0.14)cn + 0.14(.78) with c0 = 0.68. Then

c1 = 0.86c0 + 0.1092 = 0.86(0.68) + 0.1092 = 0.694

c2 = 0.86c1 + 0.1092 = 0.86(0.694) + 0.1092 = 0.706

c3 = 0.86c2 + 0.1092 = 0.86(0.706) + 0.1092 = 0.716

Equilibrium occurs when cn+1 = cn = ce, so ce = 0.86ce + 0.1092 or 0.14ce = 0.1092. Thus,
ce = 0.78. The solution is approaching the equilibrium, so it is stable.



5. Let Pn+1 = 1.05Pn + 200, with P0 = 1000. Then

P1 = 1.05P0 + 200 = 1.05(1000) + 200 = 1250

P2 = 1.05P1 + 200 = 1.05(1250) + 200 = 1512.5 ≃ 1513

P3 = 1.05P2 + 200 = 1.05(1513) + 200 ≃ 1788

6. a. The model gives the following

Pn+1 = (1 + r)Pn − µ

90 = 70(1 + r)− µ

150 = 100(1 + r)− µ

250 = 150(1 + r)− µ

Subtracting we have 150− 90 = (100 − 70)(1 + r) so

1 + r =
60

30
= 2 or r = 1.

But 150 = 100(1 + 1)− µ, so µ = 50.

b. To find the populations P1, P2, and P3,

Pn+1 = 2Pn − 50

P1 = 2(100) − 50 = 150

P2 = 2(150) − 50 = 250

P3 = 2(250) − 50 = 450

c. Equilibrium occurs when Pn+1 = Pn = Pe, so Pe = 2Pe − 50 or Pe = 50. The solution is
moving away from the equilibrium, so it is unstable.

7. a. The population of a species of moth satisfies the model

Pn+1 = rPn + µ.

From the data in 1990, 1991, and 1992 with populations of P0 = 6000, P1 = 5500, and P2 =
5100, respectively, the model gives the following:

5500 = 6000r + µ

5100 = 5500r + µ.

By subtracting these equations, we have 5500 − 5100 = (6000 − 5500)r, so r = 400

500
= 0.8. But

5500 = 6000(0.8) + µ, so µ = 700. Therefore, we can find the number of moths in the following
3 years (1993, 1994, and 1995) with the following computation:

P3 = 0.8P2 + 700 = 0.8(5100) + 700 = 4780

P4 = 0.8P3 + 700 = 0.8(4780) + 700 = 4524

P5 = 0.8P4 + 700 = 0.8(4524) + 700 = 4319



b. As before, the equilibrium satisfies Pn+1 = Pn = Pe, so Pe = 0.8Pe + 700 or 0.2Pe = 700,
which gives Pe = 3500. This population is moving towards the equilibrium, so it is considered
stable. The equilibrium population is the long time behavior of the model in this case, so
ultimately, we expect 3500 moths on the island.

c. The graph of the updating function and the identity map are below. Note that the equilibrium
population is where the updating function and identity map intersect. Also included is the
cobwebbing for the first few iterations, showing the solution heading toward the equilibrium.
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