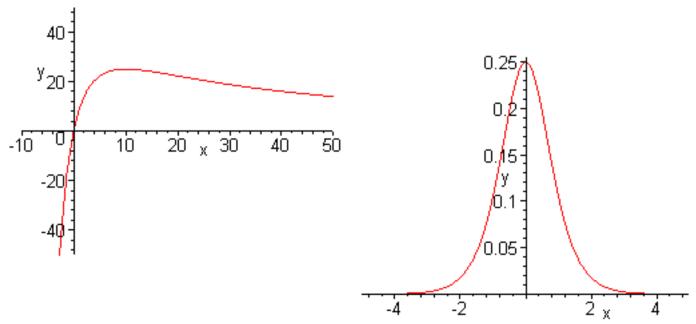

1.
$$f'(x) = 4(x^2 - 3x + 4)^3(2x - 3)$$
,

2.
$$f'(x) = x^2 3(x^3 - 2x + 1)^2 (3x^2 - 2) + 2x(x^3 - 2x + 1)^3$$
,

3.
$$f'(x) = \frac{(2x+1)2xe^{x^2} - 2e^{x^2}}{(2x+1)^2} + \frac{2}{x}$$

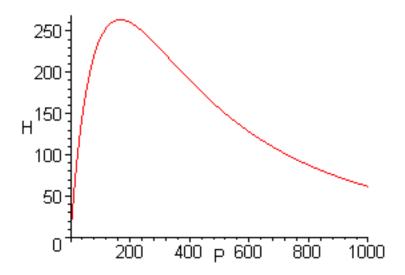

4.
$$f'(x) = 3(x^2 - e^{-x^2})^2(2x + 2xe^{-x^2}).$$

5. $y' = -2xe - x^2/2$. Even function. Maximum at (0,2). Only y-intercept at (0,2). Horizontal asymptote: y = 0. $y'' = 2e - x^2/2(x^2 - 1)$. Points of inflection at $(\pm 1, 2e^{-1/2}) \simeq (\pm 1, 1.213)$. Graph is to the left below.

6. $y' = \frac{2x}{x^2 + 1}$. Even function. Minimum at (0,0). Only intercept at (0,0). No asymptotes. $y'' = \frac{2(1-x^2)}{(x^2+1)^2}$. Points of inflection at $(\pm 1, \ln(2)) \simeq (\pm 1, 0.693)$. Graph is to the right above.

7. $y' = \frac{x-10}{(1+0.1x)^3}$. No symmetry. Maximum at (10,25). Only y-intercept at (0,0). Horizontal asymptote: y=0. Vertical Asymptote: x=-10. $y''=\frac{-0.2(x-20)}{(1+0.1x)^4}$. Point of inflection at (20,22.22). Graph is to the left below.

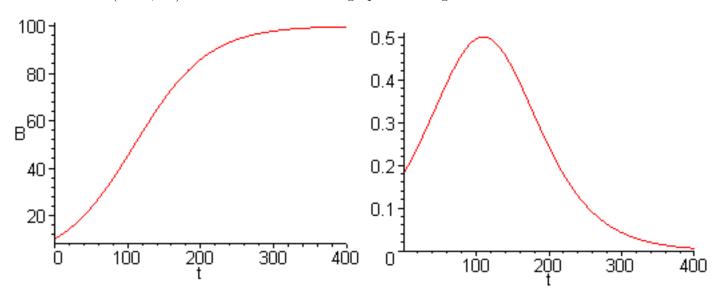
8. $y' = \frac{-2e^{2x}(e^{2x}-1)}{(1+e^{2x})^3}$. Even function. Maximum at (0,0.25). Only intercept at (0,0.25). Horizontal asymptote: y=0. $y''=\frac{4e^{2x}(e^{4x}-4e^{2x}+1)}{(1+e^{2x})^4}$. Points of inflection at $(\pm 0.6585,0.1667)$. Graph is to the right above.


9. a. Rate of growth in height: h'(a) = 6.44 cm/yr.

b. Weight as a function of age $W(a) = 0.0000302(6.44a + 82.1)^{2.84}$. The derivative is $W'(a) = 0.0005523(6.44a + 82.1)^{1.84}$ kg/yr.

c. Rate of change of weight: W'(4) = 3.039 kg/yr, W'(8) = 4.506 kg/yr, and W'(13) = 6.704 kg/yr.

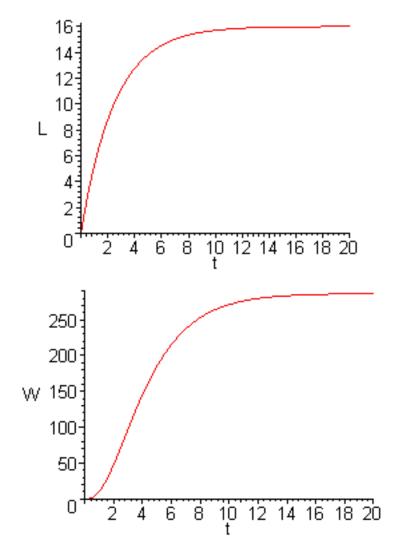
10. a. The equilibria are $P_e = 0$ and $500(5(1/4) - 1) \approx 247.67$.


b. Only intercept is (0,0). Horizontal asymptote: $P_{n+1}=0$. Maximum at $(500/3,625(3/4)^3)\simeq (166.7,263.7)$. A sketch of H(P) is below.

11. a. The derivative of B(t) is $B'(t) = \frac{18e^{-0.02t}}{(1+9e^{-0.02t})^2}$. The second derivative of B(t) is $B''(t) = \frac{0.36(9e^{-0.04t} - e^{-0.02t})}{(1+9e^{-0.02t})^3}.$

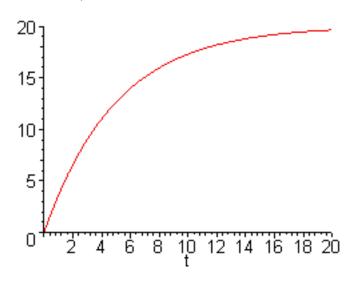
b. The *B*-intercept is (0,10). There is a horizontal asymptote B=100. The point of inflection is (109.9,50). Below is a sketch of the graph to the left.

c. B'(0) = 0.18. There is a horizontal asymptote B' = 0. The maximum of the derivative occurs at (109.9, 0.5). Below is a sketch of the graph to the right.



12. The derivative of W(t) is $W'(t) = 15.552e^{-0.2t}(1-e^{-0.2t})^2$. The second derivative of W(t) is $W''(t) = 3.1104e^{-0.2t}(1-e^{-0.2t})(3e^{-0.2t}-1)$. The weight is increasing most rapidly at the point of inflection, which occurs at $t = 5 \ln(3) \simeq 5.49$ yrs.

13. a. The intercept is (0,0), and the horizontal asymptote is L=16 cm. The graph is shown below.


b. The composite function is given by $W(t) = 286.72(1 - e^{-0.4t})^3$. This has an intercept (0,0), and the horizontal asymptote is W = 286.72 g. The graph is shown below.

c. The derivative of W(t) is $W'(t) = 344.064e^{-0.4t}(1-e^{-0.4t})^2$. The second derivative of W(t) is $W''(t) = 137.6256e^{-0.4t}(1-e^{-0.4t})(3e^{-0.4t}-1)$. The weight of the sculpin is increasing most rapidly at the point of inflection, which occurs at $t = \frac{5}{2}\ln(3) \simeq 2.75$ yrs. The average sculpin weighs 84.95 g at this age and is increasing in weight at a rate of 50.97 g/yr.

14. a. The intercept for P(t) is (0,0), while the horizontal asymptote is P=20 metric tons. A graph of this function is below. The derivative is $P'(t)=4e^{-0.2t}$ metric tons/yr. The rate of change of biomass at t=0 is 4.0 metric tons/yr; at t=2 is 2.68 metric tons/yr; at t=10 is 0.541 metric tons/yr; at t=20 is 0.0733 metric tons/yr.

b. The composite function is given by $H(t) = H(P(t)) = 3\left(1 - e^{-2(1-e^{-0.2t})}\right)$. The derivative satisfies $H'(t) = 1.2e^{-0.2t}e^{-2(1-e^{-0.2t})}$. The rate of change of biomass of the herbivores at t=0 is 1.2 metric tons/yr; at t=2 is 0.416 metric tons/yr; at t=10 is 0.0288 metric tons/yr; at t=20 is 0.003085 metric tons/yr.

