Fall 2021 Math 537 Lecture Regular Perturbations Solutions

1. (6pts) Consider the transcendental equation with a small nonlinear perturbation:

2 — 1z — 6 = ecos(z), with < 1.

We let
:U:a:o+6331+52x2+(’)<53),

then
cos(z) = cos(zg + ex1 + 29 + O <€3)> = cos(zg) — exy sin(xg) + O (52> .

The equation above becomes:
(wo +er +elaa+0O (53) )2 - (xo ter+elaa+0O (53) ) —6= 5( cos(zg) —exy sin(zg) + O (52) )

FExpanding in orders of ¢, we find:

2 — 19— 6+ 5(23:0301 -z — cos(xo)) + €2 (onxg + 27 — 29+ 21 sin(:co)) +0 (55) =0.

The two roots are perturbations of the roots, xo = —2 and 3. Sequentially, we have:

€Y 22— 29 —6=(20+2)(x0—3)=0 or zp=-2,3,

el 2x0r1 — 1 = cos(xg) or x] = gzz(xoi,

g2 2x0T9 + $% —x9 = —xysin(xzg) or 1z = _a:l(sm(a:o) + xl).

2.%‘0 -1
For x¢o = —2, we have:
2 1 —sin(2

o= Q) 0083200367, ay = LT SSm( )~ 0.013750624.

For zg = 3, we have:
3 in(3

o= OB 0197008499, wp — —W ~ —0.002252371.

At 29 = —2, MatLab gives the roots of our equation as x = —1.991812826, when ¢ = 0.1 and

r = —1.999169080, when € = 0.01. The two and three term approximations are:

z=-2+0.1z; = —1.991677063, z=—-2+40.1z1 + 0.01xzy = —1.991814570,
z=—-2+0.0lz; = —1.999167706, = —2+0.01z7 4+ 0.0001x2 = —1.999169081.

For € = 0.1, the approximations have 4 and 6 significant figures, while for ¢ = 0.01, the approxi-
mations have 6 and 9 significant figures, respectively.

At zg = 3, MatLab gives the roots of our equation as x = 2.980181417, when ¢ = 0.1 and
x = 2.998019794, when ¢ = 0.01. The two and three term approximations are:

r =3+ 0.1z; = 2.980200150, z =3+ 0.1z + 0.01z2 = 2.980177626,
=34 0.01z; = 2.998020015, z =3+ 0.01z1 4+ 0.0001z2 = 2.998019790.



For ¢ = 0.1, the approximations again have 4 and 6 significant figures, while for ¢ = 0.01, the
approximations again have 6 and 9 significant figures, respectively.

2. (5pts) a. The Bernoulli’s IVP given by:

dy 3

o Ty=ey, with y(0) =1,
is solved using the change of variables u = y'=2 = y~2, so % = —2y*3%. Multiplying the ODE
above by —2y~3 gives:
d d
—2y73d—?z — 2y 2= —2¢ or d—? —2u = —2e.

This is a linear ODE with integrating factor pu(t) = e=%, so

d

42\ o -2t _ 2t
o (e u) 2ee™ ™, or u(t) = e + ce”.

Since y(0) = 1, then u(0) = 1. It follows that c =1 —¢, so
u(t) =e(l— )+ =y 2 or  43(1)

Taking the positive square root, we find:

= 1+e(e 2 —1) - e_t(l ele™ - 1))

This is readily expanded using the p-series:

1 3/4
R e, 2/ =2t 1\2 3
y(t) = e (1 26(6 1)+ 2!6(6 1) +(9(5> ,
3 2
= et %(e‘?” —e H+ —; (e —2e 3 e )+ O (53) .

b. (5pts) Assuming a solution in the form:

y(t) = yo(t) + ey () +e%a(t) + O (),
with the initial conditions:
w0) =1, 41(0) =y2(0) =--- =0,
we substitute into the Bernoulli’s ODE above and obtain:
yo(t) +ey () +eys()+0 (%) + (yo(t) +eyi (t)+e2ya () + 0 (%) ) = E(yo(t) +eyr () +e%y2(t) + 0 (%) )3.
We solve the problems successively for the different powers of €.

eV yo+yo=0 with yo=1,



gives yo(t) = et Next

1

g y’1+y1=y8:e_3t

with y; =0,
has the integrating factor u(t) = e'. Thus,

d

1
T etyl) =% or y1(t) = —5673’5 +ce".

/N

With the IC we have y;(t) = (e~ — e73). Next

3
e yh+typ =3y =-(e e

—5t
5 )

with  y9 =0,
has the integrating factor u(t) = e!. Thus,

d 3, _ _ 3. _ _ _
7 (etyg) = 5(6 2 _ e or ya(t) = *§(2€ 3 _ e £ et

With the IC we have ys(t) = %(e*t —2e¢73t + e77). We combine these results to obtain:

3e?

yt) =e P4 (et —e3) ¢ ?(e_t — 23 e 1 O (63) :

These terms are readily seen to match the ones in the power series of Part a.



