1. (6pts) Consider the transcendental equation with a small nonlinear perturbation:

$$
x^{2}-x-6=\varepsilon \cos (x), \quad \text { with } \quad \varepsilon \ll 1 .
$$

We let

$$
x=x_{0}+\varepsilon x_{1}+\varepsilon^{2} x_{2}+\mathcal{O}\left(\varepsilon^{3}\right),
$$

then

$$
\cos (x)=\cos \left(x_{0}+\varepsilon x_{1}+\varepsilon^{2} x_{2}+\mathcal{O}\left(\varepsilon^{3}\right)\right)=\cos \left(x_{0}\right)-\varepsilon x_{1} \sin \left(x_{0}\right)+\mathcal{O}\left(\varepsilon^{2}\right) .
$$

The equation above becomes:

$$
\left(x_{0}+\varepsilon x_{1}+\varepsilon^{2} x_{2}+\mathcal{O}\left(\varepsilon^{3}\right)\right)^{2}-\left(x_{0}+\varepsilon x_{1}+\varepsilon^{2} x_{2}+\mathcal{O}\left(\varepsilon^{3}\right)\right)-6=\varepsilon\left(\cos \left(x_{0}\right)-\varepsilon x_{1} \sin \left(x_{0}\right)+\mathcal{O}\left(\varepsilon^{2}\right)\right)
$$

Expanding in orders of ε, we find:

$$
x_{0}^{2}-x_{0}-6+\varepsilon\left(2 x_{0} x_{1}-x_{1}-\cos \left(x_{0}\right)\right)+\varepsilon^{2}\left(2 x_{0} x_{2}+x_{1}^{2}-x_{2}+x_{1} \sin \left(x_{0}\right)\right)+\mathcal{O}\left(\varepsilon^{3}\right)=0 .
$$

The two roots are perturbations of the roots, $x_{0}=-2$ and 3 . Sequentially, we have:

$$
\begin{array}{ll}
\varepsilon^{0}: & x_{0}^{2}-x_{0}-6=\left(x_{0}+2\right)\left(x_{0}-3\right)=0 \text { or } x_{0}=-2,3, \\
\varepsilon^{1}: & 2 x_{0} x_{1}-x_{1}=\cos \left(x_{0}\right) \text { or } x_{1}=\frac{\cos \left(x_{0}\right)}{2 x_{0}-1}, \\
\varepsilon^{2}: & 2 x_{0} x_{2}+x_{1}^{2}-x_{2}=-x_{1} \sin \left(x_{0}\right) \text { or } x_{2}=-\frac{x_{1}\left(\sin \left(x_{0}\right)+x_{1}\right)}{2 x_{0}-1} .
\end{array}
$$

For $x_{0}=-2$, we have:

$$
x_{1}=-\frac{\cos (2)}{5} \approx 0.083229367, \quad x_{2}=\frac{x_{1}(x 1-\sin (2))}{5} \approx-0.013750624 .
$$

For $x_{0}=3$, we have:

$$
x_{1}=\frac{\cos (3)}{5} \approx-0.197998499, \quad x_{2}=-\frac{x_{1}\left(\sin (3)+x_{1}\right)}{5} \approx-0.002252371 .
$$

At $x_{0}=-2$, MatLab gives the roots of our equation as $x=-1.991812826$, when $\varepsilon=0.1$ and $x=-1.999169080$, when $\varepsilon=0.01$. The two and three term approximations are:

$$
\begin{aligned}
x=-2+0.1 x_{1} & =-1.991677063, & & x=-2+0.1 x_{1}+0.01 x_{2}=-1.991814570, \\
x=-2+0.01 x_{1} & =-1.999167706, & & x=-2+0.01 x_{1}+0.0001 x_{2}=-1.999169081 .
\end{aligned}
$$

For $\varepsilon=0.1$, the approximations have 4 and 6 significant figures, while for $\varepsilon=0.01$, the approximations have 6 and 9 significant figures, respectively.
At $x_{0}=3$, MatLab gives the roots of our equation as $x=2.980181417$, when $\varepsilon=0.1$ and $x=2.998019794$, when $\varepsilon=0.01$. The two and three term approximations are:

$$
\begin{array}{rll}
x=3+0.1 x_{1}=2.980200150, & & x=3+0.1 x_{1}+0.01 x_{2}=2.980177626, \\
x=3+0.01 x_{1}=2.998020015, & & x=3+0.01 x_{1}+0.0001 x_{2}=2.998019790 .
\end{array}
$$

For $\varepsilon=0.1$, the approximations again have 4 and 6 significant figures, while for $\varepsilon=0.01$, the approximations again have 6 and 9 significant figures, respectively.
2. (5pts) a. The Bernoulli's IVP given by:

$$
\frac{d y}{d t}+y=\varepsilon y^{3}, \quad \text { with } \quad y(0)=1
$$

is solved using the change of variables $u=y^{1-3}=y^{-2}$, so $\frac{d u}{d t}=-2 y^{-3} \frac{d y}{d t}$. Multiplying the ODE above by $-2 y^{-3}$ gives:

$$
-2 y^{-3} \frac{d y}{d t}-2 y^{-2}=-2 \varepsilon \quad \text { or } \quad \frac{d u}{d t}-2 u=-2 \varepsilon
$$

This is a linear ODE with integrating factor $\mu(t)=e^{-2 t}$, so

$$
\frac{d}{d t}\left(e^{-2 t} u\right)=-2 \varepsilon e^{-2 t}, \quad \text { or } \quad u(t)=\varepsilon+c e^{2 t}
$$

Since $y(0)=1$, then $u(0)=1$. It follows that $c=1-\varepsilon$, so

$$
u(t)=\varepsilon\left(1-e^{2 t}\right)+e^{2 t}=y^{-2}(t) \quad \text { or } \quad y^{2}(t)=\frac{e^{-2 t}}{1+\varepsilon\left(e^{-2 t}-1\right)} .
$$

Taking the positive square root, we find:

$$
y(t)=\frac{e^{-t}}{\sqrt{1+\varepsilon\left(e^{-2 t}-1\right)}}=e^{-t}\left(1+\varepsilon\left(e^{-2 t}-1\right)\right)^{-\frac{1}{2}}
$$

This is readily expanded using the p -series:

$$
\begin{aligned}
y(t) & =e^{-t}\left(1-\frac{1}{2} \varepsilon\left(e^{-2 t}-1\right)+\frac{3 / 4}{2!} \varepsilon^{2}\left(e^{-2 t}-1\right)^{2}+\mathcal{O}\left(\varepsilon^{3}\right)\right), \\
& =e^{-t}-\frac{\varepsilon}{2}\left(e^{-3 t}-e^{-t}\right)+\frac{3 \varepsilon^{2}}{8}\left(e^{-5 t}-2 e^{-3 t}+e^{-t}\right)+\mathcal{O}\left(\varepsilon^{3}\right) .
\end{aligned}
$$

b. (5pts) Assuming a solution in the form:

$$
y(t)=y_{0}(t)+\varepsilon y_{1}(t)+\varepsilon^{2} y_{2}(t)+\mathcal{O}\left(\varepsilon^{3}\right),
$$

with the initial conditions:

$$
y_{0}(0)=1, \quad y_{1}(0)=y_{2}(0)=\cdots=0,
$$

we substitute into the Bernoulli's ODE above and obtain:
$y_{0}^{\prime}(t)+\varepsilon y_{1}^{\prime}(t)+\varepsilon^{2} y_{2}^{\prime}(t)+\mathcal{O}\left(\varepsilon^{3}\right)+\left(y_{0}(t)+\varepsilon y_{1}(t)+\varepsilon^{2} y_{2}(t)+\mathcal{O}\left(\varepsilon^{3}\right)\right)=\varepsilon\left(y_{0}(t)+\varepsilon y_{1}(t)+\varepsilon^{2} y_{2}(t)+\mathcal{O}\left(\varepsilon^{3}\right)\right)^{3}$.
We solve the problems successively for the different powers of ε.

$$
\varepsilon^{0}: \quad y_{0}^{\prime}+y_{0}=0 \quad \text { with } \quad y_{0}=1,
$$

gives $y_{0}(t)=e^{-t}$. Next

$$
\varepsilon^{1}: \quad y_{1}^{\prime}+y_{1}=y_{0}^{3}=e^{-3 t} \quad \text { with } \quad y_{1}=0
$$

has the integrating factor $\mu(t)=e^{t}$. Thus,

$$
\frac{d}{d t}\left(e^{t} y_{1}\right)=e^{-2 t} \quad \text { or } \quad y_{1}(t)=-\frac{1}{2} e^{-3 t}+c e^{-t}
$$

With the IC we have $y_{1}(t)=\frac{1}{2}\left(e^{-t}-e^{-3 t}\right)$. Next

$$
\varepsilon^{2}: \quad y_{2}^{\prime}+y_{2}=3 y_{0}^{2} y_{1}=\frac{3}{2}\left(e^{-3 t}-e^{-5 t}\right) \quad \text { with } \quad y_{2}=0
$$

has the integrating factor $\mu(t)=e^{t}$. Thus,

$$
\frac{d}{d t}\left(e^{t} y_{2}\right)=\frac{3}{2}\left(e^{-2 t}-e^{-4 t}\right) \quad \text { or } \quad y_{2}(t)=-\frac{3}{8}\left(2 e^{-3 t}-e^{-5 t}\right)+c e^{-t}
$$

With the IC we have $y_{2}(t)=\frac{3}{8}\left(e^{-t}-2 e^{-3 t}+e^{-5 t}\right)$. We combine these results to obtain:

$$
y(t)=e^{-t}+\frac{\varepsilon}{2}\left(e^{-t}-e^{-3 t}\right)+\frac{3 \varepsilon^{2}}{8}\left(e^{-t}-2 e^{-3 t}+e^{-5 t}\right)+\mathcal{O}\left(\varepsilon^{3}\right) .
$$

These terms are readily seen to match the ones in the power series of Part a.

