
Fall 2021 Math 537 Lecture Activity Cauchy Solutions

1. (4pts) In lecture we showed that a 2nd order Cauchy-Euler problem with repeated roots, r = r1
had the general solution:

y(t) = tr1
(
c1 + c2 ln(t)

)
.

Now consider the 3rd order differential operator L by

L[y] = t3y ′′′ + αt2y ′′ + βty ′ + γy = 0, (1)

where the auxiliary equation has three equal roots, so F (r) = (r − r1)
3. Following the same

operation as seen in the lecture notes, we have

∂

∂r
L[tr] =

∂

∂r
[trF (r)] = (r − r1)3tr ln(t) + 3(r − r1)2tr,

which is clearly zero when r = r1. However,

∂

∂r
L[tr] = L

[
∂

∂r
(tr)

]
= L[tr ln(t)],

which must be zero when r = r1, showing that y2(t) = tr1 ln(t) is a second linearly independent
solution. Taking a second partial derivative gives:

∂2

∂r2
L[tr] =

∂2

∂r2
[trF (r)] = (r − r1)3tr

(
ln(t)

)2
+ 6(r − r1)2tr ln(t) + 6(r − r1)tr,

which again must be zero when r = r1. Since

∂2

∂r2
L[tr] =

∂

∂r
L[tr ln(t)] = L

[
∂

∂r
(tr) ln(t)

]
= tr

(
ln(t)

)2
,

which must be zero when r = r1, showing that y3(t) = tr1
(

ln(t)
)2

is a third linearly independent
solution. It follows that the general solution to (1) is given by:

y(t) = tr1
(
c1 + c2 ln(t) + c3

(
ln(t)

)2)
.

2. (4pts) With the Cauchy-Euler method of taking y(t) = tr, the 3rd order linear homogeneous
ODE given by:

t3y ′′′ + 9t2y ′′ + 19ty ′ + 8y = 0,

has the auxiliary equation given by:

F (r) = r(r − 1)(r − 2) + 9r(r − 1) + 19r + 8 = r3 + 6r2 + 12r + 8 = (r + 2)3 = 0.

It follows that r1 = −2 is a triple root of the auxiliary equation. From Problem 1, it follows that
the general solution to this problem is given by:

y(t) =
1

t2

(
c1 + c2 ln(t) + c3

(
ln(t)

)2)
.



3. (4pts) Reduction of Order (Jean D’Alembert (1717-1783)): If y1(x) is known for the linear
ODE:

y ′′ + p(x)y ′ + q(x)y = 0,

then attempt a solution of the form y(x) = v(x)y1(x) with y1(x) 6= 0. Since y1(x) is a known solution
to the original equation, it follows that y1

′′ + p(x)y1
′ + q(x)y1 = 0. With y(x) = v(x)y1(x), then

y ′(x) = v ′(x)y1(x) + v(x)y ′1(x) and y ′′(x) = 2v ′(x)y ′1(x) + v ′′(x)y1(x) + v(x)y ′′1(x).

These are substituted into the original equation, so

2v ′(x)y ′1(x) + v ′′(x)y1(x) + v(x)y ′′1(x) + p(x)v ′(x)y1(x) + p(x)v(x)y ′1(x) + q(x)v(x)y1(x) = 0.

This reduces to
v ′′(x)y1(x) + v ′

[
p(x)y1(x) + 2y ′1(x)

]
= 0.

Now if we let w(x) = v ′(x), then:

y1(x)w ′(x) + w(x)
(
p(x)y1(x) + 2y ′1(x)

)
= 0 or w ′ = −

(
p(x) + 2

y ′1(x)

y1(x)

)
w.

which is a linear 1st order ODE in w. Separate w and take the integral of both sides

ln(w) = ln(v′) = −2 ln(y1)−
∫
p(x) dx.

Exponentiating we have:
dv

dx
= e−2 ln(y1)−

∫
p(x) dx =

e−
∫
p(x) dx

y21(x)
.

It follows by integrating both sides of the equation that:

v(x) =

∫
e−

∫
p(x) dx

[y1(x)]2
dx.

Thus, the second linearly independent solution satisfies:

y2(x) = y(x) = v(x) · y1(x) = y1(x)

∫
e−

∫
p(x)dx

[y1(x)]2
dx.

4. (4pts) a. Consider the following ODE:

xy ′′ + (1− 2x)y ′ + (x− 1)y = 0. (2)

Show that y1(x) = ex is a solution to this differential equation.

For y1(x) = ex, we have y ′1(x) = ex = y ′′1(x). Substituting into the original equation:

xex + (1− 2x)ex + (x− 1)ex = ex(x+ x− 2x+ 1− 1) = 0,

so y1(x) is a solution.



b. Since y1(x) = ex is one solution to (2), we use the Reduction of Order method to find y2(x)
for (2). It follows that:

y2(x) = ex
∫
e
∫
(− 1

x
+2)dx

e2x
dx = ex

∫
x−1e2x

e2x
dx = ex ln |x|.

We can show that these solutions make a fundamental set of solutions by showing that the Wron-
skian of the two are nonzero.

W[y1,y2] =

∣∣∣∣ ex ex ln(x)

ex ex ln(x) + ex

x

∣∣∣∣ =
e2x

x
.

We can see that W[y1,y2] 6= 0 for all x, thus making y1, y2 a fundamental set of solutions.


