1. (3pts) The homogeneous ODE:

$$
\dot{\mathbf{x}}=\left(\begin{array}{rrr}
-2 & 0 & 0 \\
0 & -1 & 1 \\
0 & -1 & -1
\end{array}\right) \mathbf{x},
$$

has its matrix in Jordan form. It is easy to see that the eigenvalues are $\lambda=-2,-1 \pm i$. It follows from the lecture notes that the fundamental solution to this ODE is easily written:

$$
\Phi(t)=\left(\begin{array}{ccc}
e^{-2 t} & 0 & 0 \\
0 & e^{-t} \cos (t) & e^{-t} \sin (t) \\
0 & -e^{-t} \sin (t) & e^{-t} \cos (t)
\end{array}\right)
$$

From the Corollary of Abel's formula, we show that $|\Phi(t)| \neq 0$

$$
\begin{aligned}
\left|\begin{array}{ccc}
e^{-2 t} & 0 & 0 \\
0 & e^{-t} \cos (t) & e^{-t} \sin (t) \\
0 & -e^{-t} \sin (t) & e^{-t} \cos (t)
\end{array}\right| & =e^{-2 t}\left|\begin{array}{cc}
e^{-t} \cos (t) & e^{-t} \sin (t) \\
-e^{-t} \sin (t) & e^{-t} \cos (t)
\end{array}\right| \\
& =e^{-2 t}\left(e^{-2 t} \cos ^{2}(t)+e^{-2 t} \sin ^{2}(t)\right)=e^{-4 t}(1) \neq 0 .
\end{aligned}
$$

Thus, we have a fundamental solution, $\Phi(t)$.
2. (5pts) From the lecture notes, we have the variation of parameters formula:

$$
\mathbf{x}(t)=\Phi(t) \Phi^{-1}\left(t_{0}\right) \mathbf{x}_{0}+\Phi(t) \int_{t_{0}}^{t} \Phi^{-1}(s) g(s) d s
$$

The nonhomogeneous ODE:

$$
\dot{\mathbf{x}}=\left(\begin{array}{rrr}
-2 & 0 & 0 \\
0 & -1 & 1 \\
0 & -1 & -1
\end{array}\right) \mathbf{x}+\left(\begin{array}{c}
e^{-2 t} \\
1 \\
t
\end{array}\right), \quad x(0)=\left(\begin{array}{l}
x_{10} \\
x_{20} \\
x_{30}
\end{array}\right)
$$

has the fundamental solution, $\Phi(t)$, from above. It is easily seen that:

$$
g(t)=\left(\begin{array}{c}
e^{-2 t} \\
1 \\
t
\end{array}\right) \quad \text { and } \quad \Phi^{-1}(t)=\left(\begin{array}{ccc}
e^{2 t} & 0 & 0 \\
0 & e^{t} \cos (t) & -e^{t} \sin (t) \\
0 & e^{t} \sin (t) & e^{t} \cos (t)
\end{array}\right) .
$$

We begin by finding the particular solution with the help of Maple to solve the integrals. First we compute the integral in the formula:

$$
\int_{0}^{t} \Phi^{-1}(s) g(s) d s=\int_{0}^{t}\left(\begin{array}{c}
1 \\
e^{s}(-s \sin (s)+\cos (s)) \\
e^{s}(s \cos (s)+\sin (s))
\end{array}\right) d s=\left(\begin{array}{c}
t \\
\frac{e^{t}}{2}(t \cos (t)-t \sin (t)+\sin (t)) \\
\frac{1}{2}\left(1+e^{t}(t \cos (t)+t \sin (t)-\cos (t))\right)
\end{array}\right)
$$

Again with the help of Maple, we multiply this result by $\Phi(t)$ to obtain the particular solution to this nonhomogeneous ODE, giving the following:

$$
\mathbf{x}_{p}(t)=\left(\begin{array}{c}
t e^{-2 t} \\
\frac{t}{2}+\frac{e^{-t} \sin (t)}{2} \\
\frac{t}{2}-\frac{1}{2}+\frac{e^{-t} \cos (t)}{2}
\end{array}\right) .
$$

Since $\Phi^{-1}(0)=I$, the solution is given by $\mathbf{x}(t)=\Phi(t) \mathbf{x}_{0}+\mathbf{x}_{p}(t)$. It follows that our solution is given by:

$$
\mathbf{x}(t)=\left(\begin{array}{c}
x_{10} e^{-2 t} \\
x_{20} e^{-t} \cos (t)+x_{30} e^{-t} \sin (t) \\
-x_{20} e^{-t} \sin (t)+x_{30} e^{-t} \cos (t)
\end{array}\right)+\left(\begin{array}{c}
t e^{-2 t} \\
\frac{t}{2}+\frac{e^{-t} \sin (t)}{2} \\
\frac{t}{2}-\frac{1}{2}+\frac{e^{-t} \cos (t)}{2}
\end{array}\right)
$$

3. (3pts) The homogeneous ODE:

$$
\dot{\mathbf{x}}=\left(\begin{array}{cc}
0 & 1 \\
2 t^{-2} & -2 t^{-1}
\end{array}\right) \mathbf{x}, \quad t>0,
$$

is transformed into a Cauchy-Euler equation by letting $y(t)=x_{1}(t)$. The system above shows $y^{\prime}=\dot{x}_{1}=x_{2}$, so $y^{\prime \prime}=\dot{x}_{2}=2 t^{-2} x_{1}-2 t^{-1} x_{2}=2 t^{-2} y-2 t^{-1} y^{\prime}$, so

$$
t^{2} y^{\prime \prime}+2 t y^{\prime}-2 y=0
$$

Trying $y(t)=t^{r}$ in the ODE above gives:

$$
t^{r}(r(r-1)+2 r-2)=t^{r}\left(r^{2}+r-2\right)=0,
$$

which gives the auxiliary equation $(r+2)(r-1)=0$. Thus, the Cauchy-Euler equation has the general solution:

$$
y(t)=c_{1} \frac{1}{t^{2}}+c_{2} t
$$

giving two linearly independent solutions, $y_{1}(t)=\frac{1}{t^{2}}$ and $y_{2}(t)=t$. We create a fundamental solution by letting the first row be these solutions and the second row being their derivatives. Thus, we take

$$
\Phi(t)=\left(\begin{array}{cc}
\frac{1}{t^{2}} & t \\
-\frac{2}{t^{3}} & 1
\end{array}\right) .
$$

From the Corollary of Abel's formula, we compute $\operatorname{det}|\Phi(t)|$, so

$$
\left|\begin{array}{cc}
\frac{1}{t^{2}} & t \\
-\frac{2}{t^{3}} & 1
\end{array}\right|=\frac{1}{t^{2}}+\frac{2}{t^{2}}=\frac{3}{t^{2}} \neq 0
$$

It follows that this is a fundamental solution.
4. (5pts) From the lecture notes, we have the variation of parameters formula:

$$
\mathbf{x}(t)=\Phi(t) \Phi^{-1}\left(t_{0}\right) \mathbf{x}_{0}+\Phi(t) \int_{t_{0}}^{t} \Phi^{-1}(s) g(s) d s
$$

The nonhomogeneous ODE:

$$
\dot{\mathbf{x}}=\left(\begin{array}{cc}
0 & 1 \\
2 t^{-2} & -2 t^{-1}
\end{array}\right) \mathbf{x}+\binom{6 t}{9 t^{-4}}, \quad x(1)=\binom{x_{10}}{x_{20}}, \quad t>0,
$$

has the fundamental solution, $\Phi(t)$, from above. It is easily seen that:

$$
g(t)=\binom{6 t}{9 t^{-4}} \quad \text { and } \quad \Phi^{-1}(t)=\left(\begin{array}{cc}
\frac{t^{2}}{3} & -\frac{t^{3}}{3} \\
\frac{2}{3 t} & \frac{1}{3}
\end{array}\right) .
$$

We begin by finding the particular solution to solve the integrals. First we compute the integral in the formula:

$$
\int_{1}^{t} \Phi^{-1}(s) g(s) d s=\int_{1}^{t}\binom{2 s^{3}-\frac{3}{s}}{4+\frac{3}{s^{4}}} d s=\binom{\frac{t^{4}}{2}-\frac{1}{2}-3 \ln (t)}{4 t-3-\frac{1}{t^{3}}} .
$$

With the help of Maple we multiply this result by $\Phi(t)$ to obtain the particular solution to this nonhomogeneous ODE, giving the following:

$$
\mathbf{x}_{p}(t)=\left(\begin{array}{cc}
\frac{1}{t^{2}} & t \\
-\frac{2}{t^{3}} & 1
\end{array}\right)\binom{\frac{t^{4}}{2}-\frac{1}{2}-3 \ln (t)}{4 t-3-\frac{1}{t^{3}}}=\binom{\frac{9 t^{4}-6 t^{3}-6 \ln (t)-3}{2 t^{2}}}{\frac{3 t^{4}-3 t^{3}+6 \ln (t)}{t^{3}}} .
$$

The homogeneous part satisfying the ICs gives:

$$
\mathbf{x}_{h}(t)=\Phi(t) \Phi^{-1}\left(t_{0}\right) \mathbf{x}_{0}=\left(\begin{array}{cc}
\frac{1}{t^{2}} & t \\
-\frac{2}{t^{3}} & 1
\end{array}\right)\left(\begin{array}{cc}
\frac{1}{3} & -\frac{1}{3} \\
\frac{2}{3} & \frac{1}{3}
\end{array}\right)\binom{x_{10}}{x_{20}}=\binom{\left(\frac{1}{3 t^{2}}+\frac{2 t}{3}\right) x_{10}+\left(-\frac{1}{3 t^{2}}+\frac{t}{3}\right) x_{20}}{\left(-\frac{2}{3 t^{3}}+\frac{2}{3}\right) x_{10}+\left(\frac{2}{3 t^{3}}+\frac{1}{3}\right) x_{20}} .
$$

It follows that the solution is given by:

$$
\mathbf{x}(t)=\mathbf{x}_{h}(t)+\mathbf{x}_{p}(t)=\binom{\left(\frac{1}{3 t^{2}}+\frac{2 t}{3}\right) x_{10}+\left(-\frac{1}{3 t^{2}}+\frac{t}{3}\right) x_{20}+\frac{9 t^{4}-6 t^{3}-6 \ln (t)-3}{2 t^{2}}}{\left(-\frac{2}{3 t^{3}}+\frac{2}{3}\right) x_{10}+\left(\frac{2}{3 t^{3}}+\frac{1}{3}\right) x_{20}+\frac{3 t^{4}-3 t^{3}+6 \ln (t)}{t^{3}}} .
$$

