1. (3pts) The radioactive decay equation satisfies:

$$
\frac{d R}{d t}=-k R, \quad R(0)=1, \quad \text { so }, \quad R(t)=e^{-k t}
$$

where $k=\frac{\ln (2)}{5730} \approx 0.000121$ and t is the age of the object. If p is the fraction of ${ }^{14} \mathrm{C}$ remaining, then:

$$
p=e^{-k t} \quad \text { or } \quad t=\frac{1}{k} \ln \left(\frac{1}{p}\right) .
$$

For the fossilized bone from a man in Western Pennsylvania, its age is approximately,

$$
t=\frac{5730}{\ln (2)} \ln \left(\frac{1}{0.16}\right) \approx 15,150 \mathrm{yrs} .
$$

With the error range of $15 \%-17 \%$, its age ranges from 14,650 to 15,680 yrs, using the formula above with 0.15 or 0.17 replacing 0.16 .
The formula above can be used to age the Kenyan man. Its age is approximately,

$$
t=\frac{5730}{\ln (2)} \ln \left(\frac{1}{0.08}\right) \approx 20,880 \mathrm{yrs} .
$$

With the error range of $7 \%-9 \%$, its age ranges from 19,910 to 21,980 yrs, using the formula above with 0.07 or 0.09 replacing 0.08 .
2. (6 pts) This cascading system of radioactive elements is readily written as the following series of ODEs:

$$
\begin{aligned}
& \dot{x}_{1}=r-k_{1} x_{1}, \\
& \dot{x}_{2}=k_{1} x_{1}-k_{2} x_{2}, \quad \text { with } \quad x_{1}(0)=0, \\
& \dot{x}_{3}=k_{2} x_{2}-k_{3} x_{3}, \quad \text { with } \quad x_{2}(0)=0, \\
& x_{3}(0)=0,
\end{aligned}
$$

where

$$
k_{1}=\ln (2) \approx 0.69315, \quad k_{2}=\frac{\ln (2)}{10} \approx 0.069315, \quad k_{3}=\frac{\ln (2)}{400} \approx 0.0017329, \quad r=10
$$

These can readily be solved sequentially from our linear ODE techniques. The first equation has the integrating factor $\mu(t)=e^{k_{1} t}$, so

$$
\frac{d}{d t}\left(e^{k_{1} t} x_{1}\right)=r e^{k_{1} t} \quad \text { or } \quad x_{1}(t)=e^{-k_{1} t}\left(\frac{r e^{k_{1} t}}{k_{1}}+C_{1}\right)
$$

With the initial condition, $x_{1}(0)=0$, this becomes:

$$
x_{1}(t)=\frac{r}{k_{1}}\left(1-e^{-k_{1} t}\right) .
$$

The second equation has the integrating factor $\mu(t)=e^{k_{2} t}$, so

$$
\frac{d}{d t}\left(e^{k_{2} t} x_{2}\right)=r e^{k_{2} t}\left(1-e^{-k_{1} t}\right) \quad \text { or } \quad x_{2}(t)=e^{-k_{2} t}\left(\frac{r e^{k_{2} t}}{k_{2}}-\frac{r e^{\left(k_{2}-k_{1}\right) t}}{k_{2}-k_{1}}+C_{2}\right) .
$$

With the initial condition, $x_{2}(0)=0$, this becomes:

$$
x_{2}(t)=\frac{r}{k_{2}\left(k_{2}-k_{1}\right)}\left(k_{2}-k_{1}-k_{2} e^{-k_{1} t}+k_{1} e^{-k_{2} t}\right) .
$$

The third equation has the integrating factor $\mu(t)=e^{k_{3} t}$, so

$$
\frac{d}{d t}\left(e^{k_{3} t} x_{3}\right)=\frac{r e^{k_{3} t}}{\left(k_{2}-k_{1}\right)}\left(k_{2}-k_{1}-k_{2} e^{-k_{1} t}+k_{1} e^{-k_{2} t}\right)
$$

or

$$
x_{3}(t)=r e^{-k_{3} t}\left(\frac{e^{k_{3} t}}{k_{3}}-\frac{k_{2} e^{\left(k_{3}-k_{1}\right) t}}{\left(k_{2}-k_{1}\right)\left(k_{3}-k_{1}\right)}+\frac{k_{1} e^{\left(k_{3}-k_{2}\right) t}}{\left(k_{2}-k_{1}\right)\left(k_{3}-k_{2}\right)}+C_{3}\right) .
$$

With the initial condition, $x_{3}(0)=0, C_{3}=\frac{k_{2}}{\left(k_{2}-k_{1}\right)\left(k_{3}-k_{1}\right)}-\frac{1}{k_{3}}-\frac{k_{1}}{\left(k_{2}-k_{1}\right)\left(k_{3}-k_{2}\right)}$, so

$$
x_{3}(t)=r\left(\frac{\left(1-e^{-k_{3} t}\right)}{k_{3}}-\frac{k_{2}\left(e^{-k_{1} t}-e^{-k_{3} t}\right)}{\left(k_{2}-k_{1}\right)\left(k_{3}-k_{1}\right)}+\frac{k_{1}\left(e^{-k_{2} t}-e^{-k_{3} t}\right)}{\left(k_{2}-k_{1}\right)\left(k_{3}-k_{2}\right)}\right) .
$$

With the values of r, k_{1}, k_{2}, and k_{3} substituted into the expressions for $x_{1}(t), x_{2}(t)$, and $x_{3}(t)$, and evaluating these expressions at $t=100$ and 400 , we find that:

$$
\begin{array}{ll}
x_{1}(100)=14.427, & x_{1}(400)=14.427, \\
x_{2}(100)=144.11, & x_{2}(400)=144.27, \\
x_{3}(100)=781.41, & x_{3}(400)=2804.0 .
\end{array}
$$

It is easy to see that these solutions require a fair amount of work!
3. (4pts) The quasi-steady state approximation for x_{1} and x_{2} assumes that $\dot{x}_{1}=\dot{x}_{2}=0$, so $k_{1} \bar{x}_{1}=r$ or $\bar{x}_{1}=\frac{r}{k_{1}}$. Also, $k_{2} \bar{x}_{2}=k_{1} \bar{x}_{1}=r$ or $\bar{x}_{2}=\frac{r}{k_{2}}$. This leaves the slow equation:

$$
\dot{x}_{3} \approx k_{2} \bar{x}_{2}-k_{3} x_{3}=r-k_{3} x_{3} \quad \text { with } \quad x_{3}(0)=0 .
$$

This has the approximate solution:

$$
x_{3}(t) \approx \frac{r}{k_{3}}\left(1-e^{-k_{3} t}\right),
$$

which was significantly easier to solve. With this approximation, we have

$$
x_{3}(100) \approx 918.15 \quad \text { and } \quad x_{3}(400) \approx 2885.39
$$

which produce 17% and 2.9% errors, respectively (with less than 0.6% error at $t=1000$). The algebraic equations give $\bar{x}_{1}=14.427$ and $\bar{x}_{2}=144.27$. For larger times, these are good approximations for the system of equations.
4. (3pts) Consider the linear ODE given by:

$$
t \frac{d y}{d t}-y=3 t^{2} \sin (t) \quad \text { or } \quad \frac{d y}{d t}-\frac{1}{t} y=3 t \sin (t)
$$

The integrating factor for the equation is given by:

$$
\mu(t)=e^{\int(-1 / t) d t}=e^{-\ln (t)}=\frac{1}{t} .
$$

It follows that

$$
\frac{d}{d t}\left(\frac{y}{t}\right)=3 \sin (t)
$$

Integrating both sides above gives:

$$
\frac{y(t)}{t}=-3 \cos (t)+C \quad \text { or } \quad y(t)=-3 t \cos (t)+C t .
$$

