
Fall 2021 Math 537 Lecture Linear - Soln

1. (3pts) The radioactive decay equation satisfies:

dR

dt
= −kR, R(0) = 1, so, R(t) = e−kt,

where k = ln(2)
5730 ≈ 0.000121 and t is the age of the object. If p is the fraction of 14C remaining,

then:

p = e−kt or t =
1

k
ln

(
1

p

)
.

For the fossilized bone from a man in Western Pennsylvania, its age is approximately,

t =
5730

ln(2)
ln

(
1

0.16

)
≈ 15, 150 yrs.

With the error range of 15%–17%, its age ranges from 14,650 to 15,680 yrs, using the formula above
with 0.15 or 0.17 replacing 0.16.
The formula above can be used to age the Kenyan man. Its age is approximately,

t =
5730

ln(2)
ln

(
1

0.08

)
≈ 20, 880 yrs.

With the error range of 7%–9%, its age ranges from 19,910 to 21,980 yrs, using the formula above
with 0.07 or 0.09 replacing 0.08.

2. (6pts) This cascading system of radioactive elements is readily written as the following series of
ODEs:

ẋ1 = r − k1x1, with x1(0) = 0,

ẋ2 = k1x1 − k2x2, with x2(0) = 0,

ẋ3 = k2x2 − k3x3, with x3(0) = 0,

where

k1 = ln(2) ≈ 0.69315, k2 =
ln(2)

10
≈ 0.069315, k3 =

ln(2)

400
≈ 0.0017329, r = 10.

These can readily be solved sequentially from our linear ODE techniques. The first equation has
the integrating factor µ(t) = ek1t, so

d

dt

(
ek1tx1

)
= rek1t or x1(t) = e−k1t

(
rek1t

k1
+ C1

)
.

With the initial condition, x1(0) = 0, this becomes:

x1(t) =
r

k1

(
1 − e−k1t

)
.

The second equation has the integrating factor µ(t) = ek2t, so

d

dt

(
ek2tx2

)
= rek2t

(
1 − e−k1t

)
or x2(t) = e−k2t

(
rek2t

k2
− re(k2−k1)t

k2 − k1
+ C2

)
.



With the initial condition, x2(0) = 0, this becomes:

x2(t) =
r

k2(k2 − k1)

(
k2 − k1 − k2e

−k1t + k1e
−k2t

)
.

The third equation has the integrating factor µ(t) = ek3t, so

d

dt

(
ek3tx3

)
=

rek3t

(k2 − k1)

(
k2 − k1 − k2e

−k1t + k1e
−k2t

)
or

x3(t) = re−k3t

(
ek3t

k3
− k2e

(k3−k1)t

(k2 − k1)(k3 − k1)
+

k1e
(k3−k2)t

(k2 − k1)(k3 − k2)
+ C3

)
.

With the initial condition, x3(0) = 0, C3 = k2
(k2−k1)(k3−k1)

− 1
k3

− k1
(k2−k1)(k3−k2)

, so

x3(t) = r

(
(1 − e−k3t)

k3
− k2(e

−k1t − e−k3t)

(k2 − k1)(k3 − k1)
+

k1(e
−k2t − e−k3t)

(k2 − k1)(k3 − k2)

)
.

With the values of r, k1, k2, and k3 substituted into the expressions for x1(t), x2(t), and x3(t), and
evaluating these expressions at t = 100 and 400, we find that:

x1(100) = 14.427, x1(400) = 14.427,

x2(100) = 144.11, x2(400) = 144.27,

x3(100) = 781.41, x3(400) = 2804.0.

It is easy to see that these solutions require a fair amount of work!

3. (4pts) The quasi-steady state approximation for x1 and x2 assumes that ẋ1 = ẋ2 = 0, so k1x̄1 = r
or x̄1 = r

k1
. Also, k2x̄2 = k1x̄1 = r or x̄2 = r

k2
. This leaves the slow equation:

ẋ3 ≈ k2x̄2 − k3x3 = r − k3x3 with x3(0) = 0.

This has the approximate solution:

x3(t) ≈
r

k3

(
1 − e−k3t

)
,

which was significantly easier to solve. With this approximation, we have

x3(100) ≈ 918.15 and x3(400) ≈ 2885.39,

which produce 17% and 2.9% errors, respectively (with less than 0.6% error at t = 1000). The alge-
braic equations give x̄1 = 14.427 and x̄2 = 144.27. For larger times, these are good approximations
for the system of equations.

4. (3pts) Consider the linear ODE given by:

t
dy

dt
− y = 3t2 sin(t) or

dy

dt
− 1

t
y = 3t sin(t).

The integrating factor for the equation is given by:

µ(t) = e
∫
(−1/t)dt = e− ln(t) =

1

t
.



It follows that
d

dt

(
y

t

)
= 3 sin(t).

Integrating both sides above gives:

y(t)

t
= −3 cos(t) + C or y(t) = −3t cos(t) + Ct.


