This Lecture Activity has you actively work with the lecture notes presented in class and available on my website. This activity is due by Tues. Nov 23 by noon. The problems below require written answers, which are entered into Gradescope.

Note: For full credit you must show intermediate steps in your calculations.

1. (6pts) In lecture we examined a transcendental equation with a small term in the algebraic equation. This problem examines another transcendental equation with a small nonlinear perturbation:

$$
x^{2}-x-6=\varepsilon \cos (x), \quad \text { with } \quad \varepsilon \ll 1 .
$$

This equation has two solutions, which cannot be solved algebraically. Use the techniques from lecture with

$$
x=x_{0}+\varepsilon x_{1}+\varepsilon^{2} x_{2}+\mathcal{O}\left(\varepsilon^{3}\right)
$$

to find x_{0}, x_{1}, and x_{2} for any ε. Then find approximate solutions for $\varepsilon=0.1$ and $\varepsilon=0.01$, showing the approximate values for both solutions with a two term $(\mathcal{O}(\varepsilon))$ expansion and a three term $\left(\mathcal{O}\left(\varepsilon^{2}\right)\right)$ expansion. Compare these values to the "actual" ones found using a nonlinear solver, like fsolve from either Maple or MatLab. (Slides 10-11)
2. (5pts) a. Consider the nonlinear IVP given by:

$$
\frac{d y}{d t}+y=\varepsilon y^{3}, \quad \text { with } \quad y(0)=1
$$

This is a Bernoulli's equation, which is readily solved from techniques shown in Math 337 and in this class. Find the exact solution for any ε, then find the power series expansion in ε up through $\mathcal{O}\left(\varepsilon^{2}\right)$ (a three term expansion).
b. (5pts) Use the techniques from lecture, assuming a solution in the form:

$$
y(t)=y_{0}(t)+\varepsilon y_{1}(t)+\varepsilon^{2} y_{2}(t)+\mathcal{O}\left(\varepsilon^{3}\right),
$$

with the initial conditions:

$$
y_{0}(0)=1, \quad y_{1}(0)=y_{2}(0)=\cdots=0 .
$$

Find y_{0}, y_{1}, and y_{2}, that approximate the solution to the nonlinear ODE above. Compare these iterative solutions to the power series for the exact solution. (Slides 16-19)

