This Lecture Activity has you actively work with the lecture notes presented in class and available on my website. This activity is due by Mon. Sep 27 by noon. The problems below require written answers, which are entered into Gradescope.

Note: For full credit you must show intermediate steps in your calculations.
For all of the problems below consider the matrix:

$$
A=\left(\begin{array}{ccc}
2 & -6 & 4 \\
-2 & 1 & -2 \\
1 & 6 & -1
\end{array}\right)
$$

1. (4pts) Find the $\|A\|_{1},\|A\|_{2}$, and $\|A\|_{\infty}$. (Slide Fundamental 16)
2. (4pts) Find a matrix P, such that $P^{-1} A P=D$, where D has the form:

$$
D=\left(\begin{array}{ccc}
\lambda_{1} & 0 & 0 \\
0 & \lambda_{2} & 0 \\
0 & 0 & \lambda_{3}
\end{array}\right),
$$

and $\left|\lambda_{1}\right| \geq\left|\lambda_{2}\right| \geq\left|\lambda_{3}\right|$. (Slides Fundamental 21-22)
3. (4pts) With D the diagonal matrix defined above, find the solution $\mathbf{y}(t)$ to the IVP given by:

$$
\dot{\mathbf{y}}=D \mathbf{y}, \quad \text { with } \quad \mathbf{y}(0)=[2,-1,1]^{T} .
$$

Describe the type of nodes for the origin in the y_{1} vs y_{2}, y_{1} vs y_{3}, and y_{2} vs y_{3} phase planes and sketch these three 2D phase portraits. (Slides Fundamental 22-26)
4. (4pts) Returning to the original matrix A, find the general solution to the IVP:

$$
\dot{\mathbf{x}}=A \mathbf{x}, \quad \text { with } \quad \mathbf{x}(0)=\mathbf{x}_{0}
$$

(Slide Fundamental 25)

