This Lecture Activity has you actively work with the lecture notes presented in class and available on my website. This activity is due by Mon. Sep 20 by noon. There are 3 problems that require written answers, which are entered into Gradescope.

Note: For full credit you must show intermediate steps in your calculations.

1. (5pts) Consider the example:

$$
\binom{\dot{x}_{1}}{\dot{x}_{2}}=\left(\begin{array}{cc}
2 & 0 \\
0 & -0.5
\end{array}\right)\binom{x_{1}}{x_{2}}
$$

Find the general solution to this problem. Classify the type of equilibrium and create a phase portrait using either MatLab (pplane8) or Maple. Also, determine a fundamental solution. (Slides Fundamental 3-5)
2. (4pts) In lecture we used our definitions to prove equivalence of $\|\cdot\|_{1}$ and $\|\cdot\|_{2}$. Use definitions and possibly the Cauchy-Schwartz inequality to prove the equivalence of $\|\cdot\|_{\infty}$ and $\|\cdot\|_{2}$, i.e., show that

$$
C\|\mathbf{x}\|_{\infty} \leq\|\mathbf{x}\|_{2} \leq D\|\mathbf{x}\|_{\infty},
$$

for some constants C and D. (Slides Fundamental 10-12)
3. (7pts) a. Consider the matrices:

$$
A=\left(\begin{array}{lll}
4 & 0 & 0 \\
0 & 4 & 0 \\
0 & 0 & 4
\end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right) .
$$

Let $C=A+B$. Find $\|C\|_{1}$ and $\|C\|_{\infty}$. (Slide Fundamental 15)
b. Show that A and B commute. Using the Property of Matrix Exponential Products, find $e^{C t}=$ $e^{(A+B) t}$. (Slide Fundamental 19)

