
Fall 2021 Math 537

Take-Home Final Due Thur. 12/16, Noon

For full credit you must show details of the steps you take. Computer solutions are allowed for
basic operations like finding a matrix inverse, multiplying matrices, or integrations, but write
explicitly what you did.

1. (20pts) Consider the following ODE:

xy ′′ − y ′ + 4x3y = 0. (1)

a. Show that x = 0 is a regular singular point, find the indicial equation and recurrence
relations, and determine the two linearly independent solutions. Briefly explain whether or
not this example requires a logarithmic element for the second solution, i.e., provide some
justification for which case in the method of Froebenius you are using and some specifics about
the case for this example. Determine expressions for the coefficients for these two solutions.

b. In Part a, y1(x) should be easily recognizable as a basic function. One of the earlier homework
problems introduced the reduction of order method. Use this technique to find y2(x) for (1)
and compare this solution to your series solution in Part a.

2. (20pts) a. Use singular perturbation methods to obtain a uniform approximation to the
solution of the BVP:

εy ′′ + 2y ′ + ey = 0, y(0) = 0, y(1) = 0, 0 < ε� 1.

State clearly both the inner and outer solutions that you derived.

b. Provide computer simulations of these solutions for ε = 0.1, 0.05, and 0.01. Briefly discuss
the observed behavior and explain what happens to the inner, outer, and uniform solutions as
ε→ 0.

3. (20pts) a. Use singular perturbation methods to obtain a uniform approximation to the
solution of the IVP:

du

dt
= v, ε

dv

dt
= −u2 − v, u(0) = 1, v(0) = 0, 0 < ε� 1.

State clearly both the inner and outer solutions that you derived for both u(t) and v(t).

b. Provide computer simulations of these solutions for ε = 0.1, 0.05, and 0.01 with t ∈ [0, 5].
Briefly discuss the observed behavior and explain what happens to the inner, outer, and uniform
solutions as ε→ 0.

4. (30pts) Consider the mass-spring problem, where we consider two identical masses connected
by three identical springs. Assuming a general Hooke’s law spring, using Newton’s law of forces,
and



ignoring the viscous damping between the
two springs, the following system of second
order linear ODEs can be written:

mẍ1 = −cẋ1 − kx1 + k(x2 − x1),
mẍ2 = −cẋ2 − kx2 + k(x1 − x2),

where u1 = ẋ1 and u2 = ẋ2.

a. For this part of the problem, we assume no damping, so c = 0. Define the natural frequency
by the constant ω2 = k

m . Define new state variables y = [y1, y2, y3, y4]
T , where y1 = x1, y2 = u1,

y3 = x2, and y4 = u2. Rewrite the above system of second order linear ODEs into a system of
first order linear ODEs:

ẏ = Ay, y(0) = y0. (2)

Transform A into Ja, where Ja is a matrix in real Jordan canonical form. Show how you
obtain your nonsingular transforming matrix, P , and give its inverse, P−1. (Hint: You may
want to use the theorem described on Slide 36 of the Fundamental Solutions lecture notes,
which was added after the lecture.) Write the fundamental solution, Ψ(t) = eJat.

b. In lecture we noted that the eigenspaces of A are invariant subspaces for the flow, Φ(t) = eAt,
dividing R4 into Es (stable), Eu (unstable), and Ec (center) subspaces. With c = 0, give the
dimension of each of these subspaces for this example. What is the equilibrium point and is it
hyperbolic? Briefly explain these implications for the qualitative behavior of this system. Are
there limitations to this theory for this particular model?

c. Again with c = 0, assume this system is initially at rest, and the two masses are displaced
by x10 and x20, respectively, i.e., we have:

y(0) =
(
x10, 0, x20, 0

)T
.

Write the unique solution to this initial value problem, y(t). Briefly discuss the solution de-
scribing the motion when the two masses are equally displaced to the right, x10 = x20 > 0
(symmetric motion). Also, briefly discuss the solution describing the motion when the two
masses are equally displaced in opposite directions, x10 = −x20 > 0 (antisymmetric motion).

d. For this part of the problem, we assume damping, c > 0. Define ω2 = k
m , 2γ = c

m � ω, and
new state variables y = [y1, y2, y3, y4]

T , where y1 = x1, y2 = u1, y3 = x2, and y4 = u2. Rewrite
the above system of second order linear ODEs into a system of first order linear ODEs:

ẏ = By, y(0) = y0. (3)

Transform B into Jb, where Jb is a matrix in real Jordan canonical form. Show how you
obtain your nonsingular transforming matrix, P . Write the fundamental solution, Ψ(t) = eJbt.

e. The eigenspaces of B are invariant subspaces for the flow, Φ(t) = eBt. With c > 0 and
2γ = c

m � ω, give the dimension of each of these eigenspaces for this example. What is the
equilibrium point and is it hyperbolic? Briefly explain these implications for the qualitative
behavior of this system. Are there limitations to this theory for this particular model?



5. (25pts) This problem examines periodic forcing of the basic harmonic oscillator, using both
the variation of parameters method and two forms of regular perturbation methods.

a. Consider the second order linear ODE given by:

ÿ + y = ε sin(ωt), y(0) = 1, ẏ(0) = 0,

where 0 < ε� 1 and ω are two positive parameters. Let y(t) = x1(t) and ẏ = x2(t). Transform
this second order nonhomogeneous linear ODE into a system of first order linear ODEs:

ẋ = Ax + εf(t), x(0) =

(
1
0

)
,

where A is in real Jordan canonical form and f(t) is the appropriate forcing function. Write
the fundamental solution, Φ(t) = eAt. Use Φ(t) and the variation of parameters method
to find your unique solution x(t) to the IVP above. Be sure to note any special cases.

b. Now consider the second order nonlinear ODE given by:

ÿ + y = εy
(
1− ẏ2

)
, y(0) = 1, ẏ(0) = 0, (4)

where 0 < ε � 1. Once again the right hand side is a small periodic forcing term. Use a
regular perturbation method to find an approximate solution to this nonlinear problem.
Determine an expansion to O

(
ε2
)
, i.e., find a two term ε expansion of y(t). Is this approximate

solution bounded? Explain.

c. In this part we again consider the second order nonlinear IVP given in Part b, (4). However,
this time we find an approximation using the Poincaré-Lindstedt perturbation method.
You rescale the time, t, in an ε expansion (τ = ωt with ω = 1 + εω1 + ε2ω2 + . . . ) along with
ε expansion of y(τ). Apply the Poincaré-Lindstedt perturbation method to (4) and remove
any secular terms in your order ε term for the y(τ) approximation. Give your two term
approximate solution y(τ) along with your two term time scaling τ . Is this approximate solution
necessarily bounded? Explain.

d. Let ε = 0.1 and 0.02 and use a numerical differential equation solver (like MatLab’s ODE45)
to find an accurate numerical solution of (4) for t ∈ [0, 50]. Create a graph comparing the
regular perturbation approximation of Part b, the Poincaré-Lindstedt perturbation
approximation of Part c, and the numerical solution. Briefly describe what you observe and
how these various methods compare.


