Outline

Math 537 －Ordinary Differential Equations

Lecture Notes－Power Series

> Joseph M. Mahaffy, $\langle j m a h a f f y @ s d s u . e d u\rangle$

Department of Mathematics and Statistics Dynamical Systems Group
Computational Sciences Research Center
San Diego State University
San Diego，CA 92182－7720
http：／／jmahaffy．sdsu．edu
Fall 2019
$\left.\begin{array}{|c|l}\text { Asymptotic Expansion }\end{array} \begin{array}{l}\text { Picard Iteration } \\ \text { Regular Power Series }\end{array}\right]$

Consider the non－autonomous system of linear homogeneous differential equations：

$$
\dot{\mathbf{y}}=\binom{\dot{y}_{1}}{\dot{y}_{2}}=\left(\begin{array}{ll}
0 & 1 \\
x & 0
\end{array}\right)\binom{y_{1}}{y_{2}}=A(x) \mathbf{y}
$$

which does not have an obvious solution．
The proof of the Existence and Uniqueness Theorem often uses the Method of Successive Approximations or Picard Iteration．

For the ODE

$$
\dot{\mathbf{y}}=\mathbf{f}(x, \mathbf{y}) \quad \text { with } \quad \mathbf{y}\left(x_{0}\right)=\mathbf{y}_{0}
$$

Define

$$
\begin{aligned}
\phi_{0}(x) & =\mathbf{y}_{0} \\
\phi_{k+1}(x) & =\mathbf{y}_{0}+\int_{x_{0}}^{x} f\left(s, \phi_{k}(s)\right) d s
\end{aligned}
$$

Assuming the appropriate continuity and continuity of the partial derivatives， this sequence of iterates can be shown to converge to the unique solution of the

Airy＇s Equation
－Picard Iteration
－Regular Power Series
（2）
Asymptotic Expansion
－WKB Approximation
－Improved WKB Approximation

ODE．
50
Joseph M．Mahaffy，〈jmahaffy＠sdsu．edu〉 Lecture Notes
－Power Series

Airy＇s Equation Asymptotic Expansion

Picard Iteration
Picard Iteration
Regular Power Series
Picard Iteration
Picard Iteration：Apply Picard iteration to the initial value problem：

$$
\binom{\dot{y}_{1}}{\dot{y}_{2}}=\left(\begin{array}{ll}
0 & 1 \\
x & 0
\end{array}\right)\binom{y_{1}}{y_{2}}, \quad \text { with } \quad\binom{y_{1}(0)}{y_{2}(0)}=\binom{a_{0}}{a_{1}}
$$

Let

$$
\phi_{0}(x)=\binom{a_{0}}{a_{1}}
$$

and

$$
\phi_{1}(x)=\binom{a_{0}}{a_{1}}+\int_{0}^{x}\left(\begin{array}{ll}
0 & 1 \\
s & 0
\end{array}\right)\binom{a_{0}}{a_{1}} d s=\binom{a_{0}+a_{1} x}{a_{1}+a_{0} \frac{x^{2}}{2}}
$$

Then

$$
\begin{gathered}
\phi_{2}(x)=\binom{a_{0}}{a_{1}}+\int_{0}^{x}\left(\begin{array}{ll}
0 & 1 \\
s & 0
\end{array}\right)\binom{a_{0}+a_{1} s}{a_{1}+a_{0} \frac{s^{2}}{2}} d s=\binom{a_{0}+a_{1} x+a_{0} \frac{x^{3}}{2 \cdot 3}}{a_{1}+a_{0} \frac{x^{2}}{2}+a_{1} \frac{x^{3}}{3}} . \\
\phi_{1}(x)=\binom{a_{0}}{a_{1}}+\int_{0}^{x}\left(\begin{array}{ll}
0 & 1 \\
s & 0
\end{array}\right)\binom{a_{0}+a_{1} s+a_{0} \frac{s^{3}}{2 \cdot 3}}{a_{1}+a_{0} \frac{s^{2}}{2}+a_{1} \frac{s^{3}}{3}} d s=\binom{a_{0}+a_{1} x+a_{0} \frac{x^{3}}{2 \cdot 3}+a_{1} \frac{x^{4}}{3 \cdot 4}}{a_{1}+a_{0} \frac{x^{2}}{2}+a_{1} \frac{x^{3}}{3}+a_{0} \frac{x^{5}}{2 \cdot 3 \cdot 5}} .
\end{gathered}
$$

Airy＇s Equation arises in optics，quantum mechanics， electromagnetics，and radiative transfer：

$$
y^{\prime \prime}-x y=0
$$

Assume a power series solution of the form

$$
y(x)=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

From before，

$$
y^{\prime \prime}(x)=\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=\sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2} x^{n},
$$

which is substituted into the Airy＇s equation

$$
\sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2} x^{n}=x \sum_{n=0}^{\infty} a_{n} x^{n}=\sum_{n=0}^{\infty} a_{n} x^{n+1}
$$

Airy＇s Equation：The general formula is

$$
a_{3 n}=\frac{a_{0}}{2 \cdot 3 \cdot 5 \cdot 6 \cdots(3 n-1)(3 n)}, \quad n \geq 4
$$

For the sequence，$a_{1}, a_{4}, a_{7}, \ldots$ with $n=2,5, \ldots$
$a_{4}=\frac{a_{1}}{3 \cdot 4}, \quad a_{7}=\frac{a_{4}}{6 \cdot 7}=\frac{a_{1}}{3 \cdot 4 \cdot 6 \cdot 7}, \quad a_{10}=\frac{a_{7}}{9 \cdot 10}=\frac{a_{1}}{3 \cdot 4 \cdot 6 \cdot 7 \cdot 9 \cdot 10}$
The general formula is

$$
a_{3 n+1}=\frac{a_{1}}{3 \cdot 4 \cdot 6 \cdot 7 \cdots(3 n)(3 n+1)}, \quad n \geq 4
$$

Airy＇s Equation：The series can be written

$$
2 \cdot 1 a_{2}+\sum_{n=1}^{\infty}(n+2)(n+1) a_{n+2} x^{n}=\sum_{n=1}^{\infty} a_{n-1} x^{n}
$$

so $a_{2}=0$
The recurrence relation satisfies

$$
(n+2)(n+1) a_{n+2}=a_{n-1} \quad \text { or } \quad a_{n+2}=\frac{a_{n-1}}{(n+2)(n+1)}
$$

so $a_{2}=a_{5}=a_{8}=\ldots=a_{3 n+2}=0$ with $n=0,1, \ldots$
For the sequence，$a_{0}, a_{3}, a_{6}, \ldots$ with $n=1,4, \ldots$

$$
a_{3}=\frac{a_{0}}{2 \cdot 3}, \quad a_{6}=\frac{a_{3}}{5 \cdot 6}=\frac{a_{0}}{2 \cdot 3 \cdot 5 \cdot 6}, \quad a_{9}=\frac{a_{6}}{8 \cdot 9}=\frac{a_{0}}{2 \cdot 3 \cdot 5 \cdot 6 \cdot 8 \cdot 9}
$$

Airy＇s Equation

Airy＇s Equation：The general solution is

$$
\begin{aligned}
y(x)= & a_{0}\left[1+\frac{x^{3}}{2 \cdot 3}+\frac{x^{6}}{2 \cdot 3 \cdot 5 \cdot 6}+\cdots+\frac{x^{3 n}}{2 \cdot 3 \cdot 5 \cdot 6 \cdot(3 n-1)(3 n)}+\cdots\right] \\
& +a_{1}\left[x+\frac{x^{4}}{3 \cdot 4}+\frac{x^{7}}{3 \cdot 4 \cdot 6 \cdot 7}+\cdots+\frac{x^{3 n+1}}{3 \cdot 4 \cdot 6 \cdot 7 \cdots(3 n)(3 n+1)}+\cdots\right]
\end{aligned}
$$

Power Series：In Calculus it was shown that

$$
\sin (x)=\sum_{j=0}^{\infty} \frac{(-1)^{j}}{(2 j+1)!} x^{2 j+1} .
$$

The graph below shows $\sin (x)$ and truncated series to power x^{9} ．

Airy＇s Equation	$\begin{array}{l}\text { Picard Iteration } \\ \text { Regular Power Series }\end{array}$
Asymptotic Expansion	

Power Series and $\sin (x)$

Power Series：Power series are relatively easy to produce，but they don＇t give us much about global behavior of the function．

Power series cannot show：

$$
\sin (x+2 \pi)=\sin (x)
$$

Power series cannot be used to show：

$$
\sin \left(\frac{\pi}{2}\right)=1 .
$$

Computing $\sin (x)$ for specific x uses complex numerical algorithms for obtaining accurate values，which can include Taylor＇s series．

The power series for Airy＇s equation gives us information near $x=0$ ．

How do we learn more for $x \rightarrow \infty$ ？
Suppose we let $t=\frac{1}{x}$ ，then if $x \approx 0$ ，it follows that $t \rightarrow \infty$ ．
Similarly，if $t \approx 0$ ，it follows that $x \rightarrow \infty$ ．
Next consider the differential operators of Airy＇s equation with this change of variables：

$$
\frac{d}{d x}=\frac{d}{d t} \frac{d t}{d x}=-\frac{1}{x^{2}} \frac{d}{d t}=-t^{2} \frac{d}{d t}
$$

and

$$
\frac{d^{2}}{d x^{2}}=\frac{2}{x^{3}} \frac{d}{d t}+\frac{1}{x^{4}} \frac{d^{2}}{d t^{2}}=2 t^{3} \frac{d}{d t}+t^{4} \frac{d^{2}}{d t^{2}}
$$

Recall Airy＇s equation is given by

$$
\frac{d^{2} y}{d x^{2}}-x y=0
$$

Airy＇s equation with the change of variables above becomes：

$$
t^{4} \frac{d^{2} y}{d t^{2}}+2 t^{3} \frac{d y}{d t}-\frac{1}{t} y=0
$$

Rewriting Airy＇s equation with this change of variables gives：

$$
\frac{d^{2} y}{d t^{2}}+\frac{2}{t} \frac{d y}{d t}-\frac{1}{t^{5}} y=0
$$

so for $t \approx 0$ ，these coefficients are unbounded，so this is a singular problem at $t=0$ ．

This suggests problems for Airy＇s equation as $x \rightarrow \infty$ ．

WKB Approximation Improved WKB Approximation

Airy＇s equation is given by

$$
\frac{d^{2} y}{d x^{2}}-x y=0
$$

so let $y(x)=e^{s(x)}$ and this equation becomes：

$$
\frac{d}{d x}\left(\frac{d s}{d x} e^{s}\right)-x e^{s}=0,
$$

or

$$
\frac{d^{2} s}{d x^{2}} e^{s}+\left(\frac{d s}{d x}\right)^{2} e^{s}-x e^{s}=0
$$

Equivalently，

$$
s^{\prime \prime}+\left(s^{\prime}\right)^{2}-x=0
$$

WKB Approximation：In Mathematical Physics when a linear differential equation has spatially varying coefficients，then the wave－function y is transformed into an exponential form．

This semiclassical approximation is used in quantum mechanics and was developed by Gregor Wentzel，Hendrik Anthony Kramers， and Léon Brillouin in 1926 and Harold Jeffreys in 1923；hence，called the WKB approximation（or JWKB or WKBJ approximation．

The transformation results in either the phase or amplitude becoming slow varying．
Specifically，the approximation causes the highest derivative to be multiplied by a small parameter，simplifying the analysis of the equation．

Joseph M．Mahaffy，〈jmahaffy＠sdsu．edu〉 Lecture Notes－Power Series

Airy＇s Equation Asymptotic Expansion

WKB Approximation
Improved WKB Approximation
WKB Approximation
Now suppose that $s^{\prime \prime} \ll\left(s^{\prime}\right)^{2}$ ，then the equation $s^{\prime \prime}+\left(s^{\prime}\right)^{2}-x=0$ is approximated by：

$$
\left(s^{\prime}\right)^{2}-x \approx 0 \quad \text { or } \quad s^{\prime} \approx \pm \sqrt{x}
$$

Integrating we have

$$
s(x) \approx C \pm \frac{2}{3} x^{\frac{3}{2}} .
$$

Note：If $s^{\prime} \approx \pm \sqrt{x}$ ，then $s^{\prime \prime} \approx \pm \frac{1}{2 \sqrt{x}}$ ．
Thus，as $x \rightarrow \infty$ ，it is clear that $s^{\prime \prime} \ll\left(s^{\prime}\right)^{2}$ ．
It follows that our initial guess of $y(x)=e^{s(x)}$ gives an approximate solution of

$$
y(x) \approx c_{1} e^{-\frac{2}{3} x^{\frac{3}{2}}}+c_{2} e^{\frac{2}{3} x^{\frac{3}{2}}}, \quad \text { as } \quad x \rightarrow \infty .
$$

Similarly, as $x \rightarrow-\infty$,

$$
s^{\prime} \approx \pm i \sqrt{|x|}, \quad \text { so } \quad s(x) \approx C \pm \frac{2}{3} i|x|^{\frac{3}{2}},
$$

which is still consistent with $s^{\prime \prime} \ll\left(s^{\prime}\right)^{2}$.
Again it follows that our initial guess of $y(x)=e^{s(x)}$ gives an approximate solution of

$$
y(x) \approx c_{1} e^{-\frac{2}{3} i|x|^{\frac{3}{2}}}+c_{2} e^{\frac{2}{3}|x|^{\frac{3}{2}}}, \quad \text { as } \quad x \rightarrow-\infty .
$$

By the Euler formula, this gives

$$
y(x) \approx d_{1} \cos \left(\frac{2}{3}|x|^{\frac{3}{2}}\right)+d_{2} \sin \left(\frac{2}{3}|x|^{\frac{3}{2}}\right), \quad \text { as } \quad x \rightarrow-\infty .
$$

It follows that for $x \rightarrow \infty$ the solution to Airy's equation grows or decays exponentially, while for $x \rightarrow-\infty$ it oscillates.

Airy's Equation Asymptotic Expansion

WKB Approximation

Improved WKB Approximation
WKB Approximation
The WKB Approximations are seen in the previous slides to match reasonably well away from $x=0$ with the exponentials showing the appropriate growth or decay, while the oscillatory solutions match well in phase though the amplitude of the Airy's function are slowly decaying.
From the power series solutions, we have:

$$
y_{1 h}(x)=1+\frac{x^{3}}{2 \cdot 3}+\ldots \quad \text { and } \quad y_{2 h}(x)=x+\frac{x^{4}}{3 \cdot 4}+\ldots
$$

so it follows that

$$
\operatorname{Ai}(x)=\frac{1}{\pi} \int_{0}^{\infty} \cos \left(\frac{t^{3}}{3}+x t\right) d t=c_{1} y_{1 h}(x)+c_{2} y_{2 h}(x)
$$

for some constants c_{1} and c_{2}.
Similarly,

$$
\operatorname{Bi}(x)=\frac{1}{\pi} \int_{0}^{\infty}\left[\exp \left(\frac{-t^{3}}{3}+x t\right)+\sin \left(\frac{t^{3}}{3}+x t\right)\right] d t=d_{1} y_{1 h}(x)+d_{2} y_{2 h}(x)
$$

for some constants d_{1} and d_{2}.
But showing this is a non-trivial exercise in Complex Variables.

Improved WKB Approximation：Before we examined the equation：

$$
\begin{equation*}
s^{\prime \prime}+\left(s^{\prime}\right)^{2}-x=0 \tag{1}
\end{equation*}
$$

with the assumption that $s^{\prime \prime} \ll\left(s^{\prime}\right)^{2}$ ．
Now let $s=s_{0}+s_{1}+\ldots$ ，where $s_{0}(x)$ satisfies $\left(s_{0}^{\prime}\right)^{2}-x=0$ ． We take a two term expansion in Eq．（1）and obtain：

$$
\begin{array}{r}
s_{0}^{\prime \prime}+s_{1}^{\prime \prime}+\left(s_{0}^{\prime}+s_{1}^{\prime}\right)^{2}-x=0 \\
s_{0}^{\prime \prime}+s_{1}^{\prime \prime}+\left(s_{0}^{\prime}\right)^{2}+2 s_{0}^{\prime} s_{1}^{\prime}+\left(s_{1}^{\prime}\right)^{2}-x=0
\end{array}
$$

which simplifies to

$$
s_{0}^{\prime \prime}+2 s_{0}^{\prime} s_{1}^{\prime}+s_{1}^{\prime \prime}+\left(s_{1}^{\prime}\right)^{2}=0
$$

Airy＇s Equation Asymptotic Expansion

Improved WKB Approximation
Improved WKB Approximation
Improved WKB Approximation：From before we had $s_{0}^{\prime}(x)= \pm x^{\frac{1}{2}}$ ，so it follows that

$$
e^{s} \approx \frac{1}{\left(s_{0}^{\prime}\right)^{\frac{1}{2}}} e^{s_{0}}=\frac{1}{|x|^{\frac{1}{4}}} e^{ \pm \frac{2}{3} x^{\frac{3}{2}}} .
$$

This improved WKB approximation has little effect on the exponential growth or decay approximations of Airy＇s functions with $x \geq 0$ ．
The left shows $y(x)=\operatorname{Ai}(x)$ compared to $y_{a}(x) \approx 0.27 e^{-\frac{2}{3} x^{\frac{3}{2}}} / x^{\frac{1}{4}}$ ，and the right shows $y(x)=\operatorname{Bi}(x)$ compared to $y_{b}(x) \approx 0.56 e^{\frac{2}{3} x^{\frac{3}{2}}} / x^{\frac{1}{4}}$ ．

Schrödinger Equation：Consider the one－dimensional time－independent Schrödinger equation：

$$
-\frac{\hbar}{2 m} \frac{d^{2} y}{d x^{2}}+V(x) y=E y
$$

where $y(x)$ gives standing wave solutions and $V(x)$ is the potential energy． Rescaling readily transforms the Schrödinger equation into

$$
-\frac{d^{2} y}{d x^{2}}+\tilde{V}(x) y=\tilde{E} y .
$$

Suppose the potential energy satisfies $V(x)=x$ ，then equation becomes

$$
\frac{d^{2} y}{d x^{2}}-(x-\tilde{E}) y=0
$$

With $\bar{x}=x-\tilde{E}$ ，（so $\frac{d}{d x}=\frac{d}{d \bar{x}}$ ）

$$
\frac{d^{2} y}{d \bar{x}^{2}}-\bar{x} y=0
$$

which has the solution：

$$
y=c_{1} \operatorname{Ai}(\bar{x})=c_{1} \operatorname{Ai}(x-\tilde{E})
$$

