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Picard Iteration 1

Consider the non-autonomous system of linear homogeneous differential
equations:

ẏ =

(
ẏ1

ẏ2

)
=

(
0 1
x 0

)(
y1

y2

)
= A(x)y,

which does not have an obvious solution.

The proof of the Existence and Uniqueness Theorem often uses the Method of
Successive Approximations or Picard Iteration.

For the ODE
ẏ = f(x,y) with y(x0) = y0,

Define

φ0(x) = y0,

φk+1(x) = y0 +

∫ x

x0

f(s, φk(s))ds.

Assuming the appropriate continuity and continuity of the partial derivatives,
this sequence of iterates can be shown to converge to the unique solution of the
ODE.

Joseph M. Mahaffy, 〈jmahaffy@sdsu.edu〉 Lecture Notes – Power Series — (3/26)

Airy’s Equation
Asymptotic Expansion

Picard Iteration
Regular Power Series

Picard Iteration 2

Picard Iteration: Apply Picard iteration to the initial value problem:(
ẏ1

ẏ2

)
=

(
0 1
x 0

)(
y1

y2

)
, with

(
y1(0)
y2(0)

)
=

(
a0

a1

)
.

Let

φ0(x) =

(
a0

a1

)
.

and

φ1(x) =

(
a0

a1

)
+

∫ x

0

(
0 1
s 0

)(
a0

a1

)
ds =

(
a0 + a1x

a1 + a0
x2

2

)
.

Then

φ2(x) =

(
a0
a1

)
+

∫ x

0

(
0 1
s 0

) a0 + a1s

a1 + a0
s2

2

 ds =

 a0 + a1x + a0
x3

2·3

a1 + a0
x2

2
+ a1

x3

3

 .

φ1(x) =

(
a0
a1

)
+

∫ x

0

(
0 1
s 0

) a0 + a1s + a0
s3

2·3

a1 + a0
s2

2
+ a1

s3

3

 ds =

 a0 + a1x + a0
x3

2·3 + a1
x4

3·4

a1 + a0
x2

2
+ a1

x3

3
+ a0

x5

2·3·5

 .
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Airy’s Equation 1

Airy’s Equation arises in optics, quantum mechanics,
electromagnetics, and radiative transfer:

y ′′ − xy = 0

Assume a power series solution of the form

y(x) =

∞∑
n=0

anx
n

From before,

y ′′(x) =

∞∑
n=2

n(n− 1)anx
n−2 =

∞∑
n=0

(n+ 2)(n+ 1)an+2x
n,

which is substituted into the Airy’s equation

∞∑
n=0

(n+ 2)(n+ 1)an+2x
n = x

∞∑
n=0

anx
n =

∞∑
n=0

anx
n+1
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Airy’s Equation 2

Airy’s Equation: The series can be written

2 · 1a2 +

∞∑
n=1

(n+ 2)(n+ 1)an+2x
n =

∞∑
n=1

an−1x
n,

so a2 = 0

The recurrence relation satisfies

(n+ 2)(n+ 1)an+2 = an−1 or an+2 =
an−1

(n+ 2)(n+ 1)
,

so a2 = a5 = a8 = ... = a3n+2 = 0 with n = 0, 1, ...

For the sequence, a0, a3, a6, ... with n = 1, 4, ...

a3 =
a0

2 · 3
, a6 =

a3
5 · 6

=
a0

2 · 3 · 5 · 6
, a9 =

a6
8 · 9

=
a0

2 · 3 · 5 · 6 · 8 · 9
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Airy’s Equation 3

Airy’s Equation: The general formula is

a3n =
a0

2 · 3 · 5 · 6 · · · (3n− 1)(3n)
, n ≥ 4

For the sequence, a1, a4, a7, ... with n = 2, 5, ...

a4 =
a1

3 · 4
, a7 =

a4
6 · 7

=
a1

3 · 4 · 6 · 7
, a10 =

a7
9 · 10

=
a1

3 · 4 · 6 · 7 · 9 · 10

The general formula is

a3n+1 =
a1

3 · 4 · 6 · 7 · · · (3n)(3n+ 1)
, n ≥ 4
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Airy’s Equation 4

Airy’s Equation: The general solution is

y(x) = a0

[
1 +

x3

2 · 3
+

x6

2 · 3 · 5 · 6
+ · · ·+

x3n

2 · 3 · 5 · 6 · · · (3n− 1)(3n)
+ · · ·

]
+a1

[
x+

x4

3 · 4
+

x7

3 · 4 · 6 · 7
+ · · ·+

x3n+1

3 · 4 · 6 · 7 · · · (3n)(3n+ 1)
+ · · ·

]
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Airy’s Equation 5

Airy’s Equation: The previous slide gave a power series solution, which we were
able to obtain without trouble.

Maple gave us the solution:

y(x) = c1Ai(x) + c2Bi(x),

where the Airy’s functions are defined by the improper Riemann integrals:

Ai(x) =
1

π

∫ ∞
0

cos

(
t3

3
+ xt

)
dt

Bi(x) =
1

π

∫ ∞
0

[
exp

(
−t3

3
+ xt

)
+ sin

(
t3

3
+ xt

)]
dt.

However, these formula don’t really give us any more information than the power
series solutions about what is the geometric behavior of the solutions.

How do we obtain more information for much larger values of x?
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Power Series and sin(x) 1

Power Series: In Calculus it was shown that

sin(x) =

∞∑
j=0

(−1)j

(2j + 1)!
x2j+1.

The graph below shows sin(x) and truncated series to power x9.
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Power Series and sin(x) 2

Power Series: Power series are relatively easy to produce, but they
don’t give us much about global behavior of the function.

Power series cannot show:

sin(x+ 2π) = sin(x).

Power series cannot be used to show:

sin
(
π
2

)
= 1.

Computing sin(x) for specific x uses complex numerical algorithms for
obtaining accurate values, which can include Taylor’s series.
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Power Series and Airy’s Function 1

The power series for Airy’s equation gives us information near
x = 0.

How do we learn more for x→∞?

Suppose we let t = 1
x , then if x ≈ 0, it follows that t→∞.

Similarly, if t ≈ 0, it follows that x→∞.

Next consider the differential operators of Airy’s equation with this
change of variables:

d
dx = d

dt
dt
dx = − 1

x2
d
dt = −t2 ddt

and
d2

dx2 = 2
x3

d
dt + 1

x4
d2

dt2 = 2t3 ddt + t4 d
2

dt2 .
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Power Series and Airy’s Function 2

Recall Airy’s equation is given by

d2y
dx2 − xy = 0.

Airy’s equation with the change of variables above becomes:

t4 d
2y
dt2 + 2t3 dydt −

1
t y = 0.

Rewriting Airy’s equation with this change of variables gives:

d2y
dt2 + 2

t
dy
dt −

1
t5 y = 0,

so for t ≈ 0, these coefficients are unbounded, so this is a singular
problem at t = 0.

This suggests problems for Airy’s equation as x→∞.
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WKB Approximation 1

WKB Approximation: In Mathematical Physics when a linear
differential equation has spatially varying coefficients, then the
wave-function y is transformed into an exponential form.

This semiclassical approximation is used in quantum mechanics
and was developed by Gregor Wentzel, Hendrik Anthony Kramers,
and Léon Brillouin in 1926 and Harold Jeffreys in 1923; hence, called
the WKB approximation (or JWKB or WKBJ approximation.

The transformation results in either the phase or amplitude
becoming slow varying.

Specifically, the approximation causes the highest derivative to be
multiplied by a small parameter, simplifying the analysis of the
equation.
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WKB Approximation 2

Airy’s equation is given by

d2y
dx2 − xy = 0,

so let y(x) = es(x) and this equation becomes:

d
dx

(
ds
dxe

s
)
− xes = 0,

or
d2s
dx2 e

s +
(
ds
dx

)2
es − xes = 0.

Equivalently,

s ′′ + (s ′)
2 − x = 0.
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WKB Approximation 3

Now suppose that s ′′ � (s ′)
2
, then the equation s ′′ + (s ′)

2 − x = 0 is
approximated by:

(s ′)
2 − x ≈ 0 or s ′ ≈ ±

√
x.

Integrating we have
s(x) ≈ C ± 2

3x
3
2 .

Note: If s ′ ≈ ±
√
x, then s ′′ ≈ ± 1

2
√
x

.

Thus, as x→∞, it is clear that s ′′ � (s ′)
2
.

It follows that our initial guess of y(x) = es(x) gives an approximate
solution of

y(x) ≈ c1e−
2
3x

3
2 + c2e

2
3x

3
2 , as x→∞.
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WKB Approximation 4

Similarly, as x→ −∞,

s ′ ≈ ±i
√
|x|, so s(x) ≈ C ± 2

3 i|x|
3
2 ,

which is still consistent with s ′′ � (s ′)
2
.

Again it follows that our initial guess of y(x) = es(x) gives an
approximate solution of

y(x) ≈ c1e−
2
3 i|x|

3
2 + c2e

2
3 i|x|

3
2 , as x→ −∞.

By the Euler formula, this gives

y(x) ≈ d1 cos
(

2
3 |x|

3
2

)
+ d2 sin

(
2
3 |x|

3
2

)
, as x→ −∞.

It follows that for x→∞ the solution to Airy’s equation grows or
decays exponentially, while for x→ −∞ it oscillates.
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WKB Approximation 5

Below we show graphs comparing our approximate solutions to the
Airy’s function with x ≥ 0.

The left shows y(x) = Ai(x) compared to ya(x) ≈ 0.25 e−
2
3x

3
2 , and the

right shows y(x) = Bi(x) compared to yb(x) ≈ 0.4 e
2
3x

3
2 .

0 1 2 3 4 5
x

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Airy’s Ai(x) Approximation

Ai(x)

Approx

0 0.5 1 1.5 2 2.5 3 3.5 4
x

0

20

40

60

80

100
Airy’s Bi(x) Approximation

Bi(x)

Approx

Joseph M. Mahaffy, 〈jmahaffy@sdsu.edu〉 Lecture Notes – Power Series — (18/26)

Airy’s Equation
Asymptotic Expansion

WKB Approximation
Improved WKB Approximation

WKB Approximation 6

Below we show graphs comparing our approximate solutions to the
Airy’s function with x ≤ 0.

The left shows y(x) = Ai(x) compared to

ya(x) ≈ 0.25
(

cos
(

2
3 |x|

3
2

)
+ sin

(
2
3 |x|

3
2

))
, and the right shows

y(x) = Bi(x) compared to yb(x) ≈ 0.25
(

cos
(

2
3 |x|

3
2

)
− sin

(
2
3 |x|

3
2

))
.

-15 -10 -5 0
x

-0.6

-0.4

-0.2

0

0.2

0.4

Airy’s Ai(x) Approximation

Ai(x)

Approx

-15 -10 -5 0
x

-0.6

-0.4

-0.2

0

0.2

0.4

Airy’s Bi(x) Approximation

Bi(x)

Approx

Joseph M. Mahaffy, 〈jmahaffy@sdsu.edu〉 Lecture Notes – Power Series — (19/26)

Airy’s Equation
Asymptotic Expansion

WKB Approximation
Improved WKB Approximation

WKB Approximation 7

The WKB Approximations are seen in the previous slides to match reasonably
well away from x = 0 with the exponentials showing the appropriate growth or
decay, while the oscillatory solutions match well in phase though the amplitude of
the Airy’s function are slowly decaying.

From the power series solutions, we have:

y1h(x) = 1 + x3

2·3 + . . . and y2h(x) = x+ x4

3·4 + . . . ,

so it follows that

Ai(x) =
1

π

∫ ∞
0

cos

(
t3

3
+ xt

)
dt = c1y1h(x) + c2y2h(x)

for some constants c1 and c2.

Similarly,

Bi(x) =
1

π

∫ ∞
0

[
exp

(
−t3

3
+ xt

)
+ sin

(
t3

3
+ xt

)]
dt = d1y1h(x) + d2y2h(x)

for some constants d1 and d2.

But showing this is a non-trivial exercise in Complex Variables.
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Improved WKB Approximation 1

Improved WKB Approximation: Before we examined the
equation:

s ′′ + (s ′)
2 − x = 0, (1)

with the assumption that s ′′ � (s ′)
2
.

Now let s = s0 + s1 + . . . , where s0(x) satisfies (s′0)
2 − x = 0.

We take a two term expansion in Eq. (1) and obtain:

s′′0 + s′′1 + (s′0 + s′1)
2 − x = 0,

s′′0 + s′′1 + (s′0)
2

+ 2s′0s
′
1 + (s′1)

2 − x = 0,

which simplifies to

s′′0 + 2s′0s
′
1 + s′′1 + (s′1)

2
= 0.
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Improved WKB Approximation 2

Improved WKB Approximation: From before we had:

s′′0 + 2s′0s
′
1 + s′′1 + (s′1)

2
= 0.

Let us assume that s′′1 and (s′1)
2

are very small relative to the other
two terms.

It follows that the next most dominant behavior after the WKB
approximation for s0 satisfies:

s′′0 + 2s′0s
′
1 ≈ 0,

which is equivalent to

s′1 = − s′′0
2s′0

or s1(x) = − 1
2 ln (s′0) .

Thus,

es = es0+s1 ≈ 1

(s′0)
1
2

es0 .
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Improved WKB Approximation 3

Improved WKB Approximation: From before we had s′0(x) = ±x
1
2 , so it

follows that

es ≈
1(
s′0
) 1

2

es0 =
1

|x|
1
4

e±
2
3
x

3
2
.

This improved WKB approximation has little effect on the exponential growth
or decay approximations of Airy’s functions with x ≥ 0.

The left shows y(x) = Ai(x) compared to ya(x) ≈ 0.27 e−
2
3
x

3
2
/x

1
4 , and the right

shows y(x) = Bi(x) compared to yb(x) ≈ 0.56 e
2
3
x

3
2
/x

1
4 .
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Improved WKB Approximation 4

Improved WKB Approximation: However, the division by |x|
1
4 does affect

amplitude, so this should be significant in the approximation for x ≤ 0.

The left shows y(x) = Ai(x) compared to

ya(x) ≈ 0.4
(

cos
(

2
3
|x|

3
2

)
+ sin

(
2
3
|x|

3
2

))
/x

1
4 , and the right shows y(x) = Bi(x)

compared to yb(x) ≈ 0.4
(

cos
(

2
3
|x|

3
2

)
− sin

(
2
3
|x|

3
2

))
/x

1
4 .
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Rapidly, we see the approximation almost identical to the Airy’s functions.
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Airy’s Application 1

Schrödinger Equation: Consider the one-dimensional time-independent
Schrödinger equation:

−
~

2m

d2y

dx2
+ V (x)y = Ey,

where y(x) gives standing wave solutions and V (x) is the potential energy.

Rescaling readily transforms the Schrödinger equation into

−
d2y

dx2
+ Ṽ (x)y = Ẽy.

Suppose the potential energy satisfies V (x) = x, then equation becomes

d2y

dx2
− (x− Ẽ)y = 0.

With x̄ = x− Ẽ, (so d
dx

= d
dx̄

)

d2y

dx̄2
− x̄y = 0,

which has the solution:

y = c1Ai(x̄) = c1Ai(x− Ẽ).
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Airy’s Application 2

The solution to Schrödinger’s equation was shown to be:

y = c1Ai(x̄) = c1Ai(x− Ẽ),

where Ẽ is the total energy.

This solution shows that crossing (right) the total energy threshold induces strong
exponential decay, which leads to quantum tunneling.

The left side shows the classical solution with standing waves.
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