

Outline

Introduction
Regular Perturbation Method
Nonlinear OscillationsPower Series Review
Algebraic Examples
Error FunctionPower Series Review
Algebraic Examples
Error FunctionIntroductionPower Series Review
Algebraic Examples
Error FunctionPower Series Review
Algebraic Examples
Error FunctionIntroductionRegular Perturbation Method
Nonlinear OscillationsPower Series Review
Algebraic Examples
Error FunctionIntroductionRegular Perturbation1

Mathematical Models rarely have an *explicit form*.

- Require approximation and numerical methods.
- Approximations often use *perturbation methods*:
 - The equations have a *small term*.
 - One physical process is significantly less important than another dominant one.
- Often *rescale* problem with a *small parameter*.
- Use the *small parameter* to create a *Taylor-like series* expansion.
- These methods can be applied to **ODEs**, **PDEs**, **algebraic** equations, and integral equations.

Regular Perturbation: For conceptual purposes an *ODE* is used to describe the approach:

$$F(t, y, y', y'', \varepsilon) = 0, \qquad t \in I,$$

where t is the independent variable, defined in the interval I, and y is the dependent variable.

The $parameter,\,\varepsilon,$ explicitly appears in the equation and is generally considered "small" with

 $\varepsilon \ll 1.$

It may also occur in the *initial* or *boundary conditions*.

Sometimes a parameter, λ , is "large," then often introduce

$$\varepsilon = \frac{1}{\lambda} \ll 1$$

Power Series Review Algebraic Examples Error Function

Regular Perturbation

Perturbation Series: Find an ε -power series of the solution to the problem with

$$y(t) = y_0(t) + \varepsilon y_1(t) + \varepsilon^2 y_2(t) + \dots$$

The *regular perturbation method* assumes a solution to the *ODE* in this form, where the functions y_0, y_1, y_2, \ldots are found by substituting into the *ODE*.

The first few terms of the ε -power series form an approximate solution, called the *perturbation solution* or approximation.

Usually only a few terms are necessary.

The method is considered successful if the *approximation* is *uniform*: *i.e.*, the difference between the approximate and exact solutions converges to **zero** at some defined rate as $\varepsilon \to 0$, uniformly on I (with $\varepsilon < \varepsilon_0$ for some ε_0).

Joseph M. Mahaffy, $\langle jmahaffy@sdsu.edu \rangle$ (5/47)

Introduction Regular Perturbation Method Nonlinear Oscillations Power Series Review Algebraic Examples Error Function

Power Series Review

Power Series Review: Some important power series are listed.

$$\begin{split} f(x) &= f(a) + f'(a)(x-a) + \frac{1}{2!}(x-a)^2 + \dots \\ e^x &= 1 + x + \frac{1}{2!}x^2 + \frac{1}{3!}x^3 + \dots \\ \sin(x) &= x - \frac{1}{3!}x^3 + \frac{1}{5!}x^5 - \frac{1}{7!}x^7 + \dots \\ \cos(x) &= 1 - \frac{1}{2!}x^2 + \frac{1}{4!}x^4 - \frac{1}{6!}x^6 + \dots \\ (1+x)^p &= 1 + px + \frac{p(p-1)}{2!}x^2 + \frac{p(p-1)(p-2)}{3!}x^3 + \dots, \qquad |x| < 1 \\ \ln(1+x) &= x - \frac{1}{2}x^2 + \frac{1}{3}x^3 - \frac{1}{4}x^4 + \dots, \qquad |x| < 1 \\ (a+x)^p &= a^p + pa^{p-1}x + \frac{p(p-1)}{2!}a^{p-2}x^2 + \frac{p(p-1)(p-2)}{3!}a^{p-3}x^3 + \dots, \qquad |\frac{x}{a}| < 1 \end{split}$$

These power series are commonly used for *asymptotic expansions*.

Power Series Review Algebraic Examples Error Function

Regular Perturbation

 $\mathbf{2}$

Regular Perturbation: The dominant behavior comes from the term, $y_0(t)$, the *leading order term*, solving the *unperturbed problem*:

 $F(t, y_0, y'_0, y''_0, 0) = 0, \qquad t \in I,$

where this problem is chosen to be solvable.

The term $\varepsilon y_1(t)$, $\varepsilon^2 y_2(t)$, ... are considered *higher order correction* terms and are assumed to be small relative to the dominant behavior.

Singular Perturbation methods arise when the regular perturbation methods fail.

The naive approach often fails for many reasons such as the problem being ill-posed, the solution is invalid on all or parts of the domain, like when there are multiple time or space scales.

(6/47)

Error Function

SDSU

 Introduction
 Power Series Review

 Regular Perturbation Method
 Algebraic Examples

Quadratic Equation

Quadratic Equation: Consider the equation:

Joseph M. Mahaffy, (jmahaffy@sdsu.edu)

$$x^2 + 2\varepsilon x - 3 = 0, (1)$$

and assume the expansion $x = x_0 + \varepsilon x_1 + \varepsilon^2 x_2 + \dots$

Nonlinear Oscillations

The Eqn. (1) satisfies:

$$(x_0 + \varepsilon x_1 + \varepsilon^2 x_2 + \dots)^2 + 2\varepsilon(x_0 + \varepsilon x_1 + \varepsilon^2 x_2 + \dots) - 3 = 0,$$

which gives

$$x_0^2 - 3 + \varepsilon (2x_0x_1 + 2x_0) + \varepsilon^2 (x_1^2 + 2x_0x_2 + 2x_1) + \mathcal{O}(\varepsilon^3) = 0.$$

Solving each power of ε gives:

$$x_0 = \pm \sqrt{3}, \qquad x_1 = -1, \qquad x_2 = \pm \frac{1}{2\sqrt{3}}, \quad \dots$$

The approximate solutions are

 $x = \sqrt{3} - \varepsilon + \frac{\varepsilon^2}{2\sqrt{3}} + \dots,$ $x = -\sqrt{3} - \varepsilon - \frac{\varepsilon^2}{2\sqrt{3}} + \dots$

Algebraic Examples Error Function

Quadratic Equation

Quadratic Equation; For the equation

$$x^2 + 2\varepsilon x - 3 = 0,$$

the quadratic formula gives exact solution;

$$x = -\varepsilon \pm \sqrt{3 + \varepsilon^2}$$

which can be expanded by the binomial expansion

$$x = -\varepsilon \pm \sqrt{3} \pm \frac{\varepsilon^2}{2\sqrt{3}} + \dots$$

, agreeing with our asymptotic expansion.

If we take $\varepsilon=0.1,$ then the exact and approximate solutions, are:

$$x = -0.1 + \sqrt{3.01} = 1.634935157, \qquad x_a = \sqrt{3} - 0.1 + \frac{0.01}{2\sqrt{3}} = 1.634937560.$$

and

$$x = -0.1 - \sqrt{3.01} = -1.834935157, \qquad x_a = \sqrt{3} - 0.1 + \frac{0.01}{2\sqrt{3}} = -1.834937560$$

With $\varepsilon = 0.01$, the answers are indistinguishable until the 9th decimal place with

$$x = -0.01 \pm \sqrt{3.0001} = 1.722079675$$
 and -1.742079675 .

Joseph M. Mahaffy, (jmahaffy@sdsu.edu) (9/47)

Introduction P Regular Perturbation Method Nonlinear Oscillations E

Power Series Review Algebraic Examples Error Function

Transcendental Equation

Transcendental Equation: Consider the equation given by

$$x^3 + \varepsilon \sin(x) + a = 0,$$

which clearly cannot be solved exactly for x.

Take
$$x = x_0 + \varepsilon x_1 + \varepsilon^2 x_2 + \ldots$$
 and find the solution to order ε^2 .

Note that

$$\begin{aligned} \sin(x) &= \sin(x_0 + \varepsilon x_1 + \varepsilon^2 x_2 + \dots) \\ &= \sin(x_0) + \cos(x_0) \left(\varepsilon x_1 + \varepsilon^2 x_2 + \dots \right) + \dots \\ &= \sin(x_0) + x_1 \cos(x_0) \varepsilon + \mathcal{O}\left(\varepsilon^2\right), \end{aligned}$$

so the equation becomes:

S

$$\left(x_0 + \varepsilon x_1 + \varepsilon^2 x_2 + \mathcal{O}\left(\varepsilon^3\right)\right)^3 + \varepsilon \left(\sin(x_0) + x_1 \cos(x_0)\varepsilon + \mathcal{O}\left(\varepsilon^2\right)\right) + a = 0.$$

SDSU

Joseph M. Mahaffy, $\langle jmahaffy@sdsu.edu \rangle$ (10/47)

Introduction	Power Series Review	Introduction	Power Series Review
Regular Perturbation Method	Algebraic Examples	Regular Perturbation Method	Algebraic Examples
Nonlinear Oscillations	Error Function	Nonlinear Oscillations	Error Function
Transcendental Equation	2	Error Function	1

2

Transcendental Equation: From

$$\left(x_0 + \varepsilon x_1 + \varepsilon^2 x_2 + \mathcal{O}\left(\varepsilon^3\right)\right)^3 + \varepsilon \left(\sin(x_0) + x_1 \cos(x_0)\varepsilon + \mathcal{O}\left(\varepsilon^2\right)\right) + a = 0,$$

we expand to:

$$x_0^3 + a + \left(3x_0^2x_1 + \sin(x_0)\right)\varepsilon + \left(3x_0^2x_2 + 3x_0x_1^2 + x_1\cos(x_0)\right)\varepsilon^2 + \mathcal{O}\left(\varepsilon^3\right) = 0.$$

Solving iteratively gives:

$$x_0 = -a^{\frac{1}{3}}, \qquad x_1 = -\frac{\sin(x_0)}{3x_0^2}, \qquad x_2 = -\frac{3x_0x_1^2 + x_1\cos(x_0)}{3x_0^2}.$$

For a = 5, we have $x_0 = -1.709975947$, $x_1 = 0.112896048$, and $x_2 = 0.009239083853$.

With $\varepsilon = 0.1$, then a **3** term expansion of x gives:

$$x = x_0 + 0.1x_1 + 0.01x_2 = -1.698593951$$

Maple gives a numerical solution to the original equation as x = -1.698593473.

Joseph M. Mahaffy, $\langle jmahaffy@sdsu.edu \rangle$ (11/47)

5050

Function

Error Function: The error function satisfies:

$$\operatorname{erf}(x) = \frac{1}{\sqrt{\pi}} \int_{-x}^{x} e^{-t^2} dt = \frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^2} dt.$$

In statistics with x > 0 and a random variable Y that is normally distributed with mean 0 and variance 0.5, the error function, erf(x), describes the probability of Y falling in the range [-x, x].

Algebraic Examples Error Function

Error Function

Since

$$\lim_{x \to \infty} \operatorname{erf}(x) = 1,$$

the *complementary error function* is given by:

$$\operatorname{erfc}(x) \equiv 1 - \operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_{x}^{\infty} e^{-t^{2}} dt.$$

Let s = t - x, then

$$\operatorname{erfc}(x) = \frac{2}{\sqrt{\pi}} \int_0^\infty e^{-(s+x)^2} ds = \frac{2}{\sqrt{\pi}} e^{-x^2} \int_0^\infty e^{-(s^2+2sx)} ds.$$

As a first order approximation, we see for x > 0

$$\operatorname{erfc}(x) = \frac{2}{\sqrt{\pi}} e^{-x^2} \int_0^\infty e^{-(s^2 + 2sx)} ds \le e^{-x^2} \frac{2}{\sqrt{\pi}} \int_0^\infty e^{-s^2} ds = e^{-x^2}.$$

SDSU

505

2

Joseph M. I	Mahaffy,	$\langle \texttt{jmahaffy@sdsu.edu} \rangle$	(13/47)
-------------	----------	--	---------

Error Function

Error Function

Complementary Error Function is better approximated using *integration by* parts:

$$\begin{aligned} \operatorname{erfc}(x) &= \frac{2}{\sqrt{\pi}} e^{-x^2} \int_0^\infty e^{-(s^2 + 2sx)} ds = \frac{2}{\sqrt{\pi}} e^{-x^2} \int_0^\infty e^{-s^2} e^{-2sx} ds \\ &= \frac{2}{\sqrt{\pi}} e^{-x^2} \left[-\frac{1}{2x} e^{-s^2} e^{-2sx} \Big|_0^\infty + \frac{1}{2x} \int_0^\infty (-2s) e^{-s^2} e^{-2sx} ds \right] \\ &= \frac{2}{\sqrt{\pi}} e^{-x^2} \left[\frac{1}{2x} - \frac{1}{x} \int_0^\infty s e^{-s^2} e^{-2sx} ds \right] \\ &= \frac{2}{\sqrt{\pi}} e^{-x^2} \left[\frac{1}{2x} - \frac{1}{x} \left(-\frac{s e^{-s^2} e^{-2sx}}{2x} \Big|_0^\infty + \frac{1}{2x} \int_0^\infty (1 - 2s^2) e^{-s^2} e^{-2sx} ds \right) \right] \\ &= \frac{2}{\sqrt{\pi}} e^{-x^2} \left[\frac{1}{2x} - \frac{1}{2x^2} \int_0^\infty (1 - 2s^2) e^{-s^2} e^{-2sx} ds \right] \end{aligned}$$

SDSU

3

Error Function	4	Motion in Resistive Medium	
Introduction Regular Perturbation Method Nonlinear Oscillations	Power Series Review Algebraic Examples Error Function	Introduction Regular Perturbation Method Nonlinear Oscillations	Motion in Resistive Medium Kepler's Laws Precession of Perihelion
${f Joseph~M.~Mahaffy},~{\tt (jmahaffy@sdsu.edu}$	(13/47)	${f Joseph}$ M. Mahaffy, $\langle { t jmahaffy@sdsu.edu} angle$	(14/47)

Complementary Error Function is approximated for large x by the following:

$$\operatorname{erfc}(x) = \frac{1}{\sqrt{\pi}} \frac{e^{-x^2}}{x} + \mathcal{O}\left(\frac{e^{-x^2}}{x^2}\right) \quad \text{as} \quad x \to \infty.$$

	1	2	3	4	5
$\operatorname{erf}(x)$	0.8427	0.9953	0.9999779	0.9999999846	1.0
Approx	0.7924	0.9948	0.9999768	0.9999999841	1.0

A useful *asymptotic expansion* given by Wikipedia is

$$\operatorname{erfc}(x) = \frac{e^{-x^2}}{x\sqrt{\pi}} \left[1 + \sum_{n=1}^{\infty} (-1)^n \frac{1 \cdot 3 \cdot 5 \cdots (2n-1)}{(2x^2)^n} \right],$$

which agrees with our computation above.

Motion in Resistive Medium		Nonlinear Oscillations	Precession of P	Perihelion	
Motion in resistive medium	Motion in Resi	stive Medium			

Resistive ODE: A body mass m with initial velocity V_0 moves in a straight line, where the *resistive force* has magnitude $av - bv^2$ with $v(\tau)$ being the velocity of the object.

It is assumed that $b \ll a$ are constants, then **Newton's Law** gives:

$$m\frac{dv}{d\tau} = -av + bv^2, \qquad v(0) = V_0.$$

With the maximum velocity of V_0 and a time scaling based on the decay rate of the linear equation, a/m, we let

$$y = \frac{v}{V_0}$$
 and $t = \frac{\tau}{m/a}$.

This change of variables creates the *dimensionless problem* with t > 0:

$$\frac{dy}{dt} = -y + \varepsilon y^2, \qquad y(0) = 1,$$

 $\varepsilon \equiv \frac{bV_0}{a} \ll 1.$

where

This last assumption is that the quadratic resistive force is small compared to the linear force.

Joseph M. Mahaffy, $\langle jmahaffy@sdsu.edu \rangle$ (16/47)

Joseph M. Mahaffy, (jmahaffy@sdsu.edu) (15/47)

Motion in Resistive Medium

Resistive ODE: The scaled model is a Bernoulli's equation and is readily solved exactly.

One makes the substitution $w = y^{-1}$, so $\frac{dw}{dt} = -y^{-2}\frac{dy}{dt}$, so transformed the scaled model becomes:

$$\frac{dw}{dt} - w = -\varepsilon, \qquad w(0) = 1.$$

This is a *linear ODE* with the solution:

$$w(t) = e^t \left(1 - \varepsilon \int_0^t e^{-s} ds\right),$$

 \mathbf{or}

$$w(t) = e^t \left(1 + \varepsilon (e^{-t} - 1) \right),$$

 or

$$y(t) = \frac{e^{-t}}{1 + \varepsilon(e^{-t} - 1)},$$

which is just a slightly altered form of the *linearized scaled model*.

SDSU

2

Motion in Resistive Medium Kepler's Laws Precession of Perihelion

Motion in Resistive Medium

Perturbation Method: For this solution we assume a solution of the form:

$$y(t) = y_0(t) + \varepsilon y_1(t) + \varepsilon^2 y_2(t) + \dots$$

and substitute this into the scaled model giving:

$$y_0' + \varepsilon y_1' + \varepsilon^2 y_2' + \dots = -(y_0 + \varepsilon y_1 + \varepsilon^2 y_2 + \dots) + \varepsilon (y_0 + \varepsilon y_1 + \varepsilon^2 y_2 + \dots)^2.$$

Collecting powers of ε yields a series of *linear ODEs*:

 $\begin{aligned} y_0' &= -y_0, \\ y_1' &= -y_1 + y_0^2, \\ y_2' &= -y_2 + 2y_0 y_1, \quad \dots \end{aligned}$

The *initial condition* satisfies:

$$y_0(0) + \varepsilon y_1(0) + \varepsilon^2 y_2(0) + \dots = 1,$$

which gives the sequence of *initial conditions*:

$$y_0(0) = 1, \qquad y_1(0) = y_2(0) = \dots = 0.$$

Kepler's Laws

Motion in Resistive Medium

Perturbation Method: The sequence of *linear ODEs* are easily solved to give:

$$y_0(t) = e^{-t},$$

$$y_1(t) = e^{-t} - e^{-2t},$$

$$y_2(t) = e^{-t} - 2e^{-2t} + e^{-3t},$$

It follows that the *approximate solution to* $\mathcal{O}(\varepsilon^2)$ satisfies:

$$y_a(t) = e^{-t} + \varepsilon (e^{-t} - e^{-2t}) + \varepsilon^2 (e^{-t} - 2e^{-2t} + e^{-3t}).$$

Recall that the exact solution is

$$y(t) = \frac{e^{-t}}{1 + \varepsilon(e^{-t} - 1)}$$

which has a *Taylor series* expansion in ε of

$$y(t) = e^{-t} + \varepsilon (e^{-t} - e^{-2t}) + \varepsilon^2 (e^{-t} - 2e^{-2t} + e^{-3t}) + \mathcal{O}(\varepsilon^3),$$

agreeing with the solution from the *perturbation method*.

Note: It is rare that one can obtain the exact solution for comparison.

Joseph M. Mahaffy, $\langle jmahaffy@sdsu.edu \rangle$ (19/47)

SDSU

Two Body Problem: Consider the motion of a planet in the solar system.

- Planet has mass m, and Sun has mass M.
- The position is $\mathbf{r}(t)$.
- Newton's Law gives $\mathbf{r}'' = \mathbf{F}$.
- Newton postulated that the *gravitational force* is proportional to the product of the masses and inversely proportional to the square of the distance between the masses.
- In vector form the *Gravitational force* satisfies

$$\mathbf{F} = -\frac{GMm}{r^2}\mathbf{i}_r,$$

where \mathbf{i}_r is a unit vector in the radial direction and $G = 6.67 \times 10^{-8} \text{ cm/g} \cdot \text{s}^2$.

SDSU

Kepler's Laws

Kepler²

Two Body Problem: From *Newton's Law*, we have the vector ODE

Motion in Resistive Medium Kepler's Laws

Kepler's Laws

2

Two Body Problem: The vector ODE satisfies:

 $\mathbf{r}^{\,\prime\prime} = -\frac{GM}{r^2}\mathbf{i}_r,$

where

$$\mathbf{r}(t) = r(t)\cos(\theta(t))\mathbf{i}_x + r(t)\sin(\theta(t))\mathbf{i}_y = x(t)\mathbf{i}_x + y(t)\mathbf{i}_y.$$

Thus,

$$\frac{dx}{dt} = \cos(\theta)\frac{dr}{dt} - r\sin(\theta)\frac{d\theta}{dt}$$
$$\frac{dy}{dt} = \sin(\theta)\frac{dr}{dt} + r\cos(\theta)\frac{d\theta}{dt}$$

It follows from the **vector ODE** that

$$\frac{d^2x}{dt^2} = \cos(\theta)\frac{d^2r}{dt^2} - 2\sin(\theta)\frac{dr}{dt}\frac{d\theta}{dt} - r\sin(\theta)\frac{d^2\theta}{dt^2} - r\cos(\theta)\left(\frac{d\theta}{dt}\right)^2 = -\frac{GM}{r^2}\cos(\theta),$$

$$\frac{d^2y}{dt^2} = \sin(\theta)\frac{d^2r}{dt^2} + 2\cos(\theta)\frac{dr}{dt}\frac{d\theta}{dt} + r\cos(\theta)\frac{d^2\theta}{dt^2} - r\sin(\theta)\left(\frac{d\theta}{dt}\right)^2 = -\frac{GM}{r^2}\sin(\theta).$$

Joseph M. Mahaffy, (jmahaffy@sdsu.edu) (22/47)

Introduction	Motion in Resistive Medium	Introduction	Motion in Resistive Medium
Regular Perturbation Method	Kepler's Laws	Regular Perturbation Method	Kepler's Laws
Nonlinear Oscillations	Precession of Perihelion	Nonlinear Oscillations	Precession of Perihelion
Laws	4	Kepler's 2 nd Law	

SDSU

Two Body Problem: Multiplying the x'' equation by $\cos(\theta)$ and the y''equation by $\sin(\theta)$ and adding the results gives the *nonlinear ODE*:

$$\frac{d^2r}{dt^2} - r\left(\frac{d\theta}{dt}\right)^2 = -\frac{GM}{r^2}$$

Similarly, multiplying the x'' equation by $\sin(\theta)$ and the y'' equation by $\cos(\theta)$ and subtracting the results gives the *nonlinear ODE*:

$$r\frac{d^2\theta}{dt^2} + 2\frac{dr}{dt}\frac{d\theta}{dt} = 0.$$

Thus, we have *two nonlinear coupled* 2^{nd} order ODEs, which with the *initial conditions* (4 of them):

$$\mathbf{r}(0) = \mathbf{r}_0 = r_0 \mathbf{i}_{r0} \quad \text{and} \quad \mathbf{r}'(0) = \mathbf{v}_0 = v_{r0} \mathbf{i}_{r0} + v_{\theta 0} \mathbf{i}_{\theta 0},$$

provide a *unique solution* for r(t) and $\theta(t)$, describing the **motion of the planet** for t > 0.

Kepler's 2^{nd} Law: Take the second *nonlinear ODE*:

$$r\frac{d^2\theta}{dt^2} + 2\frac{dr}{dt}\frac{d\theta}{dt} = 0.$$

and multiply by r, which gives:

$$r^{2}\frac{d^{2}\theta}{dt^{2}} + 2r\frac{dr}{dt}\frac{d\theta}{dt} = \frac{d(r^{2}\theta')}{dt} = 0$$

This is integrated to give

$$r^2 \frac{d\theta}{dt} = \frac{p_0}{m},$$

where p_0 is a constant depending on the initial position and velocity.

The quantity $mr^2\theta'$ is the *angular momentum*, and this result shows that angular momentum of the planet is conserved (same for all time).

Joseph M. Mahaffy, (jmahaffy@sdsu.edu) (23/47)

Introduction Motion in Resistive Med Regular Perturbation Method Nonlinear Oscillations Precession of Perihelion

Kepler's 2^{nd} Law

Kepler's 2^{nd} **Law**: Suppose at t_1 the planet is at $P_1 = (r_1, \theta_1)$ and at t_2 the planet is at $P_2 = (r_2, \theta_2)$.

With $\Delta t = t_2 - t_1$, the position vector sweeps a sector with area:

$$\Delta A = \left[\text{Area} \right] = \int_{\theta_1}^{\theta_2} \int_0^{r(\theta)} r \, dr \, d\theta = \frac{1}{2} \int_{\theta_1}^{\theta_2} r^2 d\theta = \frac{1}{2} \int_{t_1}^{t_2} r^2 \theta' dt,$$

where $r(\theta)$ is the plane curve traced by the planet's orbit.

From the *conservation of angular momentum* (integrand above being constant), it follows that

$$\Delta A = \frac{p_0}{2m} \Delta t.$$

Property (Kepler's 2^{nd} Law)

The position vector of the planet's orbit sweeps out sectors of equal area in equal time intervals.

The *integral for* ΔA gives more by relating the area with the initial angular momentum per unit mass of the planet.

Joseph M. Mahaffy, $\langle jmahaffy@sdsu.edu \rangle$ (25/47)

IntroductionMotion in Resistive MediumRegular Perturbation MethodKepler's LawsNonlinear OscillationsPrecession of Perihelion

Kepler's 1^{st} and 3^{rd} Laws

Kepler's 1st Law: It follows that

$$\frac{d^2}{d\theta^2}\left(\frac{1}{r}\right) + \frac{1}{r} = \frac{GMm^2}{p_0^2}.$$

This 2^{nd} order linear ODE has the solution:

$$\frac{1}{r} = A\cos(\theta) + B\sin(\theta) + \frac{GMm^2}{p_0^2}$$

With the *initial conditions* $r(\theta_0) = r_0$ and $\frac{dr}{d\theta}(\theta_0) = r_0 v_{r0}/v_{\theta 0}$, then for $v_{r0} = 0$ the solution satisfies:

$$r(\theta) = \frac{a(1-e^2)}{1+e\cos(\theta-\theta_0)},$$

where

$$\frac{p_0^2}{GMm^2} = a(1-e^2)$$
 and $\frac{p_0^2}{GMm^2r_0} = 1+e$

For 0 < e < 1 (*eccentricity* of the ellipse) the expression for $r(\theta)$ gives:

Property (Kepler's 1^{st} Law)

The orbit of the planet around the sun is an ellipse.

Motion in Resistive Medium Kepler's Laws Precession of Perihelion

Kepler's 1^{st} and 3^{rd} Laws

Kepler's 1^{st} and 3^{rd} Laws: From the conservation of angular momentum with

$$r^2 \frac{d\theta}{dt} = \frac{p_0}{m}$$
 or $\frac{d\theta}{dt} = \frac{p_0}{mr^2}$,

this is substituted into the other *nonlinear ODE* giving:

$$\frac{d^2r}{dt^2} - \frac{p_0^2}{m^2}\frac{1}{r^3} = -\frac{GM}{r^2},$$

which is an *autonomous nonlinear ODE* that can be solved for r(t), but results in a horrendous solution.

The shape of the planet's orbit is obtained by examining $r(\theta)$.

Differentiating and using the *conservation of angular momentum* gives

$$\frac{dr}{dt} = \frac{dr}{d\theta}\frac{d\theta}{dt} = \frac{p_0}{mr^2}\frac{dr}{d\theta} = -\frac{p_0}{m}\frac{d}{d\theta}\left(\frac{1}{r}\right),$$

 \mathbf{SO}

2

SDS

3

 $\frac{d^2r}{dt^2} = -\frac{p_0}{m}\frac{d^2}{d\theta^2}\left(\frac{1}{r}\right)\frac{d\theta}{dt} = -\frac{p_0^2}{m^2r^2}\frac{d^2}{d\theta^2}\left(\frac{1}{r}\right).$

5D50

Joseph M. Mahaffy, (jmahaffy@sdsu.edu) (26/47)

Introduction	Motion in Resistive Medium
Regular Perturbation Method	Kepler's Laws
Nonlinear Oscillations	Precession of Perihelion
TT 1 1 stat 1 and T	

Kepler's 1^{st} and 3^{ra} Laws

Kepler's 3^{rd} Law: Let T be the time for the planet to complete one revolution of its orbit, so

$$\frac{p_0T}{2m} = \text{area of the ellipse} = \pi a^2 \sqrt{1-e^2} \quad \text{or} \quad T = \frac{2m\pi a^2 \sqrt{1-e^2}}{p_0}$$

 $\sqrt{1-e^2} = \frac{p_0}{m\sqrt{GMa}},$

However,

 \mathbf{so}

0

$$T^2 = \frac{4\pi}{GN}$$

This gives

Property (Kepler's 3^{rd} Law)

The square of the orbital period is proportional to the third power of the length of the semimajor axis of the elliptical orbit.

Our derivation using *Newton's law* gives a precise prediction of the period for a planet orbiting the sun.

Precession of Perihelion

Precession of Perihelion

Precession of Perihelion: *Kepler's* 1st *Law* states that the orbit of a planet is *elliptical*.

- The point of the orbit closest to the *sun* is called *perihelion*. while the furthest point is called *aphelion*.
- Astronomical data show that the *perihelion of Mercury* advances about 574 seconds of arc/century ($\frac{\pi}{2}$ radians $= 3.24 \times 10^5$ seconds of arc).
- *Newton's law* predicts no advance.
- The multi-body problem using *Newton's law* can account for about 531 seconds of arc/century.
- This leaves about 43 seconds of arc/century, which required theory of general relativity because of the speed of the planet *Mercury* and the accumulation of small effects over time.

(29/47)

SOS

Introductior **Regular Perturbation Method** Nonlinear Oscillations

Precession of Perihelion

Precession of Perihelion

Relativistic Effects: Dynamics of planetary motion are complex.

- The *sun* moves, which has a complex effect on the observed motion of the planets.
- This is from complex effects of the relative motion of two moving frames of reference.
- *Relativistic effects* are small except for:
 - When motion is comparable to the speed of light.
 - Time allows the accumulation of many small effects.
- We examine *relativistic effects* by studying the simplified two-body problem.
- The initial approximation uses the *Newtonian ODE* derived for studying *Kepler's Laws* to which *relativistic effects* are added.

Joseph M. Mahaffy, (jmahaffy@sdsu.edu) (30/47)

Regular Perturbation MethodReplet's LawsRegular Perturbation MethodReplet's LawsNonlinear OscillationsPrecession of PerihelionNonlinear OscillationsPrecession of	n of Periheli
Introduction Motion in Resistive Medium Introduction Motion in R	n Resistive M

Relativistic Effects: Let r(t) be the radial distance between the sun and the planet.

Define the dimensionless variable:

$$\omega_0 = \frac{a(1-e^2)}{r}, \quad \text{with} \quad a(1-e^2) = \frac{p_0^2}{GMm^2}$$

then our *Newtonian equation* from before

Joseph M. Mahaffy, (jmahaffy@sdsu.edu)

$$\frac{d^2}{d\theta^2}\left(\frac{1}{r}\right) + \frac{1}{r} = \frac{GMm^2}{p_0^2}.$$

becomes

$$\frac{d^2\omega_0}{d\theta^2} + \omega_0 = 1,$$

which has the solution:

$$\omega_0(\theta) = 1 + e\cos(\theta - \theta_0).$$

recession of Perihelion

For the theory with the *relativistic effects*, we again define the dimensionless variable, $\omega = \frac{a(1-e^2)}{r}$.

The *relativistic equation* requires a working knowledge of tensor calculus, so we omit derivation of the equations of motion.

It can be shown that the *angular momentum* is still conserved and $\omega(\theta)$ satisfies the equation:

$$\frac{d^2\omega}{d\theta^2} + \omega = 1 + \varepsilon \omega^2, \qquad \text{where} \quad \varepsilon = 3 \left(\frac{GMm}{p_0c}\right)^2,$$

with c being the speed of light.

From before we have $r \approx a(1-e^2) = \frac{p_0^2}{GMm^2}$, so the *angular velocity* is approximated by:

$$r\frac{d\theta}{dt} = \frac{p_0}{mr} \approx \frac{GMm}{p_0}.$$

From the definition of ε , we find $\sqrt{\varepsilon}$ is a ratio of the planet's speed to the speed of light, which for *Mercury* satisfies:

$$\varepsilon = \mathcal{O}\left(10^{-9}\right).$$

and consider the **ODE** in ω with our perturbation method:

which from the initial value problem before has the solution:

Precession of Perihelion

Thus,

Regular Perturbation: Let

The **zeroth order** terms give:

Motion in Resistive Medium **Precession of Perihelion**

Motion in Resistive Medium Precession of Perihelion

Precession of Perihelion

The ε -order terms give the **ODE**:

$$\omega_1'' + \omega_1 = \omega_0^2 = \left(1 + e\cos(\theta - \theta_0)\right)^2 = 1 + \frac{e^2}{2} + \frac{e^2}{2}\cos(2(\theta - \theta_0)) + 2e\cos(\theta - \theta_0).$$

This is solved using the *method of undetermined coefficients* yielding:

$$\omega_1(\theta) = A\cos(\theta) + B\sin(\theta) + 1 + \frac{e^2}{2} - \frac{e^2}{6}\cos(2(\theta - \theta_0)) + e\theta\sin(\theta - \theta_0).$$

The *homogeneous* part and first **3** terms of the *particular solution* are bounded

However the last term comes from *resonance* in this **ODE** and results in an unbounded solution (from the θ factor), so results in the dominant behavior over time due to *relativistic effects*.

Joseph M. Mahaffy, (jmahaffy@sdsu.edu) (33/47)Joseph M. Mahaffy, (jmahaffy@sdsu.edu) (34/47)Motion in Resistive Medium Introduction Introduction **Duffing's Equation Regular Perturbation Method Regular Perturbation Method** Nonlinear Oscillations Nonlinear Oscillations **Precession of Perihelion** Precession of Perihelion 7

SDSU

5

Asymptotic Behavior: The resonance term is the only significant one in the $\omega_1(\theta)$ solution, so the asymptotic solution is

 $\omega(\theta) = \omega_0(\theta) + \varepsilon \omega_1(\theta) + \mathcal{O}(\varepsilon^2),$

 $\frac{d^2\omega}{d\theta^2} + \omega = 1 + \varepsilon \omega^2.$

 $\omega_0'' + \varepsilon \omega_1'' + \omega_0 + \varepsilon \omega_1 + \mathcal{O}(\varepsilon^2) = 1 + \varepsilon (\omega_0 + \varepsilon \omega_1 + \mathcal{O}(\varepsilon^2))^2.$

 $\omega_0'' + \omega_0 = 1,$

 $\omega_0(\theta) = 1 + e \cos(\theta - \theta_0).$

$$\begin{split} \omega(\theta) &\approx 1 + e \left[\cos(\theta - \theta_0) + \varepsilon(\theta - \theta_0) \sin(\theta - \theta_0) \right] \\ &= 1 + e \sqrt{1 + (\varepsilon \bar{\theta})^2} \cos(\bar{\theta} - \phi), \quad \text{with} \quad \bar{\theta} = \theta - \theta_0, \end{split}$$

where $\phi = \arctan(\varepsilon \bar{\theta}) \approx \varepsilon \bar{\theta}$ for $|\varepsilon \bar{\theta}| \ll 1$.

The phase angle ϕ varies with θ , (and thus, time).

From this the *perihelion* of the orbit advances by an amount approximately equal to $2\pi\varepsilon = 4.9 \times 10^{-7}$ radian for each revolution of Mercurv around the sun, or the perihelion precesses.

With an 88-day revolution, Mercury goes through 415 revolutions/century.

Property

By the relativistic theory, the **perihelion** of Mercury's orbit **precesses** by 43 seconds of arc for each century.

$$\omega_1'' + \omega_1 = \omega_0^2 = \left(1 + e\cos(\theta - \theta_0)\right)^2 = 1 + \frac{e^2}{2} + \frac{e^2}{2}\cos(2(\theta - \theta_0)) + 2e\cos(\theta - \theta_0).$$

$$\omega_1(\theta) = A\cos(\theta) + B\sin(\theta) + 1 + \frac{e^2}{2} - \frac{e^2}{6}\cos(2(\theta - \theta_0)) + e\theta\sin(\theta - \theta_0).$$

solutions, which remain very small when multiplied by ε .

Spring-Mass Oscillators

Spring-Mass System: Consider a mass, m, connected to a *nonlinear spring* with restoring force $ky + ay^3$ with y being the displacement from equilibrium.

Newton's second law gives:

$$m\frac{d^2y}{d\tau^2} = -ky - ay^3, \qquad \tau > 0,$$

and initial conditions:

$$y(0) = A, \qquad \frac{dy}{d\tau}(0) = 0.$$

This problem cannot be solved exactly, but for $a \ll k$, it suggests a *perturbation* method.

From the *initial conditions*, we scale y by the amplitude A.

For the scaling of time, we ignore the cubic term and examine the ODE. my'' + ky = 0, which has periodic solutions with a frequency of $\sqrt{k/m}$ or period $T = 2\pi \sqrt{m/k}.$

This suggests a scaling of

$$t = \frac{\tau}{\sqrt{m/k}}$$
 and $u = \frac{y}{A}$

Joseph M. Mahaffy, (jmahaffy@sdsu.edu) (35/47) 1051

6

Duffing's Equation Poincaré-Lindstedt Method

Duffing's Equation

Duffing's Equation: With the previous scaling, the nonlinear mass-spring equation becomes:

$$\ddot{u} + u + \varepsilon u^3 = 0,$$
 $u(0) = 1,$ $\dot{u}(0) = 0,$ $t > 0$

with the "small" dimensionless parameter (assuming $aA^2 \ll k$):

$$\varepsilon \equiv \frac{aA^2}{k} \ll 1.$$

Perturbation method suggests a solution of the form:

$$u(t) = u_0(t) + \varepsilon u_1(t) + \varepsilon^2 u_2(t) + \dots$$

This is inserted into the equation above to give:

$$\ddot{u}_0 + \varepsilon \ddot{u}_1 + \varepsilon^2 \ddot{u}_2 + \dots + u_0 + \varepsilon u_1 + \varepsilon^2 u_2(t) + \dots + \varepsilon (u_0 + \varepsilon u_1 + \varepsilon^2 u_2(t) + \dots)^3 = 0.$$

SDSU

Joseph M. Mahaffy, (jmahaffy@sdsu.edu) (37/47)

Introduction Duffing's Regular Perturbation Method

Nonlinear Oscillations

Duffing's Equation

and

Duffing's Equation is given by:

$$\ddot{u} + u + \varepsilon u^3 = 0,$$
 $u(0) = 1,$ $\dot{u}(0) = 0,$ $t > 0$

with approximate solutions:

$$u_0(t) = \cos(t).$$
$$u_0(t) + \varepsilon u_1(t) = \cos(t) + \varepsilon \left(\frac{1}{32} \left(\cos(3t) - \cos(t)\right) - \frac{3}{8}t \sin(t)\right)$$

Duffing's Equation

Duffing's Equation

Duffing's Equation: From *IVP* above, we obtain the following sequence of *IVPs*

$\ddot{u}_0 + u_0 = 0,$	$u_0(0) = 1,$	$\dot{u}_0(0)=0,$
$\ddot{u}_1 + u_1 = -u_0^3,$	$u_1(0) = 0,$	$\dot{u}_1(0)=0,.$

The first *IVP* is easily solved:

$$u_0(t) = \cos(t).$$

To solve the second *IVP*, we use the trig identity $\cos(3t) = 4\cos^3(t) - 3\cos(t)$, so

$$\ddot{u}_1 + u_1 = -\frac{1}{4} (3\cos(t) + \cos(3t)), \quad \text{with} \quad u_1(0) = 0, \quad \dot{u}_1(0) = 0.$$

Once again, the *method of undetermined coefficients* is employed to yield the solution:

$$u_1(t) = \frac{1}{32} \left(\cos(3t) - \cos(t) \right) - \frac{3}{8}t \, \sin(t).$$

The last term (*resonance* again) is clearly unbounded for large t.

This term is called a *secular term* and is inconsistent with the *physical problem*.

Higher order approximations will contain secular terms and not cancel out this approximation.

Joseph M. Mahaffy, $\langle jmahaffy@sdsu.edu \rangle$ (38/47)

quation indstedt Method	Introduction Regular Perturbation Method Nonlinear Oscillations	Equation Lindstedt Method	
3	Duffing's Equation		4
b, t > 0, $t) \Big) - \frac{3}{8}t \sin(t) \Big).$	<pre>1 function du = duffDE(t,u) 2 % Duffing's ODE 3 ep = 0.2; 4 du1 = u(2); 5 du2 = -u(1) - ep*(u(1))^3; 6 du = [du1;du2]; 7 end</pre>		
	<pre>1 mytitle = 'Duffing''s Equation'; 2 xlab = '\$u\$'; 3 ylab = '\$v\$'; 4 tt = linspace(0,2*pi,500); 5 [te,ue] = ode23(@duffDE,tt,[1;0]); 6 ep = 0.2;</pre>	% Title % X-label % Y-label	

 $u0 = \cos(tt);$

v0 = -sin(tt);

7

8

 $\mathbf{2}$

Duffing's Equation Poincaré-Lindstedt Method

Duffing's Equation

Duffing's Equation Poincaré-Lindstedt Method

SDSU

5

Joseph M. Mahaffy, $\langle jmahaffy@sdsu.edu \rangle$ (41/47)

Introduction Regular Perturbation Method Nonlinear Oscillations

Duffing's Equation Poincaré-Lindstedt Method

Duffing's Equation Revisited

Duffing's Equation Revisited: The *regular perturbation method* applied to the equation:

 $\ddot{u} + u + \varepsilon u^3 = 0,$ u(0) = 1, $\dot{u}(0) = 0,$ t > 0,

resulted in a *secular term* due to *resonance* in the solution, giving an *unbounded solution*.

The *regular perturbation method* fails to correct for variations in the period, which accumulate over time leading to solutions *out-of-phase*.

- 32 set(gca, 'FontSize', 12); % Axis tick font size
- 33 print -depsc duff_plot.eps % Create figure ...
 as EPS file

SDSU

Joseph M. Mahaffy, (jmahaffy@sdsu.edu) (42/47)

Introduction Regular Perturbation Method Nonlinear Oscillations

Poincaré-Lindstedt Method

Poincaré-Lindstedt Method: With *Duffing's equation* a perturbation is introduced into the time scale.

Specifically, let

where

$$\tau = \omega t$$
 with $\omega = 1 + \varepsilon \omega_1 + \varepsilon^2 \omega_2 + \dots$

 $u(\tau) = u_0(\tau) + \varepsilon u_1(\tau) + \varepsilon^2 u_2(\tau) + \dots,$

$$\tau = \omega t$$
 with $\omega = 1 + \varepsilon \omega_1 + \varepsilon^2 \omega_2 + \varepsilon^2 \omega_2$

so $\omega_0 = 1$, matching the frequency of the unperturbed problem.

This scaling changes **Duffing's equation** (with ' differentiation with respect to τ) to

$$\omega^2 u'' + u + \varepsilon u^3 = 0, \qquad u(0) = 1, \quad u'(0) = 0, \qquad \tau > 0$$

Substitution gives:

$$(1+\varepsilon\omega_1+\ldots)^2(u_0''+\varepsilon u_1''+\ldots)+(u_0+\varepsilon u_1+\ldots)+\varepsilon(u_0+\varepsilon u_1+\ldots)^3=0,$$

and

 $u_0(0) + \varepsilon u_1(0) + \dots = 1, \qquad u'_0(0) + \varepsilon u'_1(0) + \dots = 0.$

Duffing's Equation Poincaré-Lindstedt Method

Poincaré-Lindstedt Method

Poincaré-Lindstedt Method: Collect coefficients of the powers of ε to give the following differential equations:

$$u_0'' + u_0 = 0,$$
 $u_0(0) = 1,$ $u_0'(0) = 0,$

and

$$u_1 + u_1 = -2\omega_1 u_0'' - u_0^3, \qquad u_1(0) = u_1'(0) = 0, \dots$$

The solution to the *first equation* is:

 u_1''

 $u_0(\tau) = \cos(\tau),$

so the *second DE equation* becomes:

 $u_1'' + u_1 = 2\omega_1 \cos(\tau) - \cos^3(\tau) = \left(2\omega_1 - \frac{3}{4}\right)\cos(\tau) - \frac{1}{4}\cos(3\tau).$

Since $\cos(\tau)$ is a solution to the *homogeneous equation*, this term on the right side leads to a particular solution, leading to a *secular term* of the form $\tau \cos(\tau)$.

This term is eliminated by taking $\omega_1 = \frac{3}{8}$.

Joseph M. Mahaffy, (jmahaffy@sdsu.edu) (45/47)

Introduction Regular Perturbation Method Nonlinear Oscillations

Nonlinear Oscillatio

Poincaré-Lindstedt Method

Duffing's Equation is given by:

$$\ddot{u} + u + \varepsilon u^3 = 0,$$
 $u(0) = 1,$ $\dot{u}(0) = 0,$ $t > 0,$

with the Poincaré-Lindstedt approximate solution:

$$u(\tau) = \cos(\tau) + \frac{\varepsilon}{22} \left(\cos(3\tau) - \cos(\tau) \right) + \dots,$$

where

 $\tau = t + \frac{3\varepsilon}{8}t + \dots$

Below is a **Phase Portrait** and **Time Series** of v(t) vs u(t), where $v = \dot{u}$.

Duffing's Equation Poincaré-Lindstedt Method

Poincaré-Lindstedt Method

Poincaré-Lindstedt Method: With $\omega_1 = \frac{3}{8}$, the *second DE equation* becomes:

$$u_1'' + u_1 = -\frac{1}{4}\cos(3\tau), \qquad u_1(0) = u_1'(0) = 0.$$

The general solution is given by:

$$u_1(\tau) = c_1 \cos(\tau) + c_2 \sin(\tau) + \frac{1}{32} \cos(3\tau),$$

which with the initial conditions gives:

$$u_1(\tau) = \frac{1}{32} (\cos(3\tau) - \cos(\tau)).$$

Thus, a first-order, uniformly valid perturbation solution is

$$u(\tau) = \cos(\tau) + \frac{\varepsilon}{32} \left(\cos(3\tau) - \cos(\tau) \right) + \dots,$$

where

2

SDSU

SDSU

 $\tau = t + \frac{3\varepsilon}{8}t + \dots$

Joseph M. Mahaffy, (jmahaffy@sdsu.edu) (46/47)

SDSU