
$\overline{\text { T}}>Q:=\operatorname{JordanForm}\left(A\right.$, output $=$ ' $\left.^{\prime}\right)$;

$$
Q:=\left[\begin{array}{ccc}
6 & -4 & 1 \tag{3}\\
-6 & 2 & 0 \\
2 & 0 & 0
\end{array}\right]
$$

$\stackrel{ }{ }>Q^{-1} \cdot A \cdot Q ;$

$$
\left[\begin{array}{ccc}
-3 & 1 & 0 \tag{4}\\
0 & -3 & 1 \\
0 & 0 & -3
\end{array}\right]
$$

\gg Eigenvectors (A);

$$
\left[\begin{array}{l}
-3 \tag{6}\\
-3 \\
-3
\end{array}\right],\left[\begin{array}{ccc}
3 & 0 & 0 \\
-3 & 0 & 0 \\
1 & 0 & 0
\end{array}\right]
$$

$$
\left[\begin{array}{ccc}
0 & 0 & \frac{1}{2} \tag{5}\\
0 & \frac{1}{2} & \frac{3}{2} \\
1 & 2 & 3
\end{array}\right]
$$

Diagonalization for Complex example

$$
\left[\begin{array}{r}
-\operatorname{Latrix}([[0,1,0,0],[0,0,1,0],[0,0,0,1],[-4,-8,-8,-4]]) ; \\
A 2:=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-4 & -8 & -8 & -4
\end{array}\right]
\end{array}\right.
$$

$\overline{=}>$ Eigenvectors (A2); eigenvectors(A2);

We note that A2 is a companion matrix, so we obtain 2 real eigenvectors from the real and imaginary parts of the eigenvector. Let z be eigenvalue, then eigenvector is $\left[1, z, z^{\wedge} 2, z^{\wedge} 3\right]^{\wedge} T$
> $>\mathrm{v} 1:=\operatorname{Vector}\left(\left[1,-1+I,(-1+I)^{2},(-1+I)^{3}\right]\right)$;

$$
v l:=\left[\begin{array}{c}
1 \tag{10}\\
-1+\mathrm{I} \\
-2 \mathrm{I} \\
2+2 \mathrm{I}
\end{array}\right]
$$

This eigenvalue has algebraic multiplicity of 2 and geometric multiplicity of 1 , so must go to the higher null space $(\mathrm{A}-\operatorname{lambda} \mathrm{I}) \mathrm{v} 2=\mathrm{v} 1$.
[> with(Student $[$ LinearAlgebra $])$:
$>\operatorname{A2ev}:=\operatorname{Matrix}([[1-I, 1,0,0],[0,1-I, 1,0],[0,0,1-I, 1],[-4,-8,-8,-3-I]])$;

$$
\begin{align*}
& A 2 e v:=\left[\begin{array}{cccc}
1-\mathrm{I} & 1 & 0 & 0 \\
0 & 1-\mathrm{I} & 1 & 0 \\
0 & 0 & 1-\mathrm{I} & 1 \\
-4 & -8 & -8 & -3-\mathrm{I}
\end{array}\right] \tag{11}\\
& \text { [> ReducedRowEchelonForm(}\langle A 2 e v \mid v 1\rangle \text {); } \\
& {\left[\begin{array}{cccc}
1 & 0 & 0 & -\frac{1}{4}+\frac{I}{4}
\end{array} \frac{3}{2}+\frac{3 \mathrm{I}}{2}\right.} \\
& \begin{array}{llllll}
0 & 1 & 0 & -\frac{I}{2} & -2
\end{array} \tag{12}\\
& \begin{array}{llll}
0 & 0 & 1 & \frac{1}{2}+\frac{\mathrm{I}}{2} \quad 1-\mathrm{I}
\end{array} \\
& \left.\begin{array}{lllll}
0 & 0 & 0 & 0 & 0
\end{array}\right]
\end{align*}
$$

Need to find a v2 $=[\mathrm{w} 1, \mathrm{w} 2, \mathrm{w} 3, \mathrm{w} 4]^{\wedge} \mathrm{T}$ that satisfies the RREF above. Take $\mathrm{w} 4=2$, then we easily see that $\mathrm{w} 1=2+\mathrm{i}, \mathrm{w} 2=-2+\mathrm{i}, \mathrm{w} 3=-2 \mathrm{i}$.

Create P from the real and imaginary parts of v 1 and v 2 .
$\gg P:=\operatorname{Matrix}([[1,0,2,1],[-1,1,-2,1],[0,-2,0,-2],[2,2,2,0]])$;

$$
P:=\left[\begin{array}{cccc}
1 & 0 & 2 & 1 \tag{13}\\
-1 & 1 & -2 & 1 \\
0 & -2 & 0 & -2 \\
2 & 2 & 2 & 0
\end{array}\right]
$$

T> Pinv := MatrixInverse (P);

$$
\operatorname{Pinv}:=\left[\begin{array}{cccc}
2 & 3 & \frac{5}{2} & 1 \tag{14}\\
-1 & -1 & -1 & 0 \\
-1 & -2 & -\frac{3}{2} & -\frac{1}{2} \\
1 & 1 & \frac{1}{2} & 0
\end{array}\right]
$$

$\overline{=}>\operatorname{Pinv} \cdot A 2 \cdot P ;$

$$
\left[\begin{array}{cccc}
-1 & 1 & 1 & 0 \tag{15}\\
-1 & -1 & 0 & 1 \\
0 & 0 & -1 & 1 \\
0 & 0 & -1 & -1
\end{array}\right]
$$

