Example for Jordan Canonical Form using Maple
[> with(LinearAlgebra):
$>A:=\operatorname{Matrix}([[0,1,0],[0,0,1],[2,3,0]])$;

$$
A:=\left[\begin{array}{lll}
0 & 1 & 0 \tag{1}\\
0 & 0 & 1 \\
2 & 3 & 0
\end{array}\right]
$$

$\stackrel{-}{>}$ CharacteristicPolynomial (A, z);

$$
\begin{equation*}
z^{3}-3 z-2 \tag{2}
\end{equation*}
$$

> Eigenvectors (A);

$$
\left[\begin{array}{c}
2 \\
-1 \\
-1
\end{array}\right],\left[\begin{array}{ccc}
\frac{1}{4} & 1 & 0 \\
\frac{1}{2} & -1 & 0 \\
1 & 1 & 0
\end{array}\right]
$$

[We see that lambda_1 =-1 has algebraic multiplicity of 2 and geometric multiplicity of 1 , while lambda _2 $=2$ has algebraic and geometric multiplicity of 1 .
$>J:=\operatorname{JordanForm}\left(A\right.$, output $\left.=^{\prime} J^{\prime}\right) ; Q:=\operatorname{JordanForm}\left(A\right.$, output $\left.=' Q^{\prime}\right)$;

$$
\begin{align*}
& J:=\left[\begin{array}{ccc}
2 & 0 & 0 \\
0 & -1 & 1 \\
0 & 0 & -1
\end{array}\right] \\
& Q:=\left[\begin{array}{ccc}
\frac{1}{9} & \frac{2}{3} & \frac{8}{9} \\
\frac{2}{9} & -\frac{2}{3} & -\frac{2}{9} \\
\frac{4}{9} & \frac{2}{3} & -\frac{4}{9}
\end{array}\right] \tag{4}
\end{align*}
$$

The JordanForm command appears to require output variables of J and Q, proving the Jordan Canonical Form, J, and the Transition Matrix, Q.
-> $Q I:=$ MatrixInverse (Q);

$$
Q I:=\left[\begin{array}{ccc}
1 & 2 & 1 \\
0 & -1 & \frac{1}{2} \\
1 & \frac{1}{2} & -\frac{1}{2}
\end{array}\right]
$$

$$
J:=\left[\begin{array}{ccc}
2 & 0 & 0 \\
0 & -1 & 1 \\
0 & 0 & -1
\end{array}\right]
$$

This example has the companion matrix A . We note that if z is an eigenvalue, then it has an eigenvector,
$\mathrm{v}=\left[1, \mathrm{z}, \mathrm{z}^{\wedge} 2, \ldots, \mathrm{z}^{\wedge} \mathrm{n}\right]^{\wedge} \mathrm{T}$. Thus, we have the following eigenvectors.
For lamba $_1=2$ we get v 1 and for lamba $_2=-1$ we get v 2 .
$>v 1:=\operatorname{Vector}([1,2,4]) ; v 2:=\operatorname{Vector}([1,-1,1]) ;$

$$
\begin{aligned}
& v 1:=\left[\begin{array}{l}
1 \\
2 \\
4
\end{array}\right] \\
& v 2:=\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]
\end{aligned}
$$

These form two columns of our matrix P. The last column comes from the second null space for lamba_2 $=-1$, where $(\mathrm{A}-$ lambda_2I)v3 $=\mathrm{v} 2$. Solving
[> with(Student[LinearAlgebra]):
$>\operatorname{Aev}:=\operatorname{Matrix}([[1,1,0],[0,1,1],[2,3,1]])$;

$$
\text { Aev }:=\left[\begin{array}{lll}
1 & 1 & 0 \tag{8}\\
0 & 1 & 1 \\
2 & 3 & 1
\end{array}\right]
$$

$\stackrel{>}{ }>$ ReducedRowEchelonForm (\langle Aev $\mid v 2\rangle$);

$$
\left[\begin{array}{cccc}
1 & 0 & -1 & 2 \\
0 & 1 & 1 & -1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

The higher null space eigenvector solves this above, so we can obtain $v 3=[2,-1,0]$, thus we get our transformation matrix
$\overline{\mid}>P:=\operatorname{Matrix}([[1,1,2],[2,-1,-1],[4,1,0]])$;

$$
P:=\left[\begin{array}{ccc}
1 & 1 & 2 \tag{10}\\
2 & -1 & -1 \\
4 & 1 & 0
\end{array}\right]
$$

[^0]

[^0]: > Pinv $:=$ MatrixInverse (P);

