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Example 1

Example 1: Consider the example:(
ẋ1

ẋ2

)
=

(
−0.5 0

0 −1

)(
x1

x2

)
Find the general solution to this problem and create a phase portrait.

Since this is a diagonal matrix, we obtain the eigenvalues from the diagonal
elements, λ1 = −0.5 and λ2 = −1.

The characteristic equation is

det

∣∣∣∣ −0.5− λ 0
0 −1− λ

∣∣∣∣ = (λ+ 0.5)(λ+ 1) = 0.

For λ1 = −0.5, we have the associated eigenvector ξ(1) =

(
1
0

)
.

Similarly, for λ2 = −1 we have the associated eigenvector ξ(2) =

(
0
1

)
.
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Example 2

Example 1 (cont): The general solution satisfies:(
x1(t)
x2(t)

)
= c1

(
1
0

)
e−0.5t + c2

(
0
1

)
e−t,

which is a solution exponentially
decaying toward the origin.

This is a sink or stable node.

Solutions move more rapidly in

the direction ξ(2) =

(
0
1

)
,

while decaying more slowly in

the direction ξ(1) =

(
1
0

)
This example shows how easy it is to
solve systems of differential equations
with diagonal matrices, since the
variables are uncoupled.
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Example 3

Example 1 (cont): The general solution is given by:(
x1(t)
x2(t)

)
= c1

(
1
0

)
e−0.5t + c2

(
0
1

)
e−t,

so the linearly independent solutions are combined to give a fundamental
solution:

Φ(t) =

(
e−0.5t 0

0 e−t

)
.

It is readily seen that

Φ̇ = AΦ, and Φ(0) = I.

Furthermore, any solution can be written:(
x1(t)
x2(t)

)
= Φ(t)c̃,

where c̃ =

(
c1
c2

)
.
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Norms

We consider vectors x ∈ Rn (or Cn) and define a “distance” in terms
of the norm of a vector.

Definition (lp Norm)

Consider an n-dimensional vector x = [x1, ..., xn]T ∈ Rn (or Cn). The
lp norm for the vector x is defined by the following:

‖x‖p =

(
n∑
i=1

|xi|p
)1/p

.

Almost always the norms use p = 1 (taxicab or grid), p = 2
(Euclidean or distance), or p =∞ (max)

For x =

(
x1
x2

)
, we have ‖x‖2 =

(
x21 + x22)

)1/2
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Unit Circles

Consider x ∈ R2 and ‖x‖ ≤ 1 in three different norms

l1 Norm

x1 1

x2

1

l2 Norm

x1 1

x2

1

l∞ Norm

x1 1

x2
1

‖x‖1 ≤ 1 ‖x‖2 ≤ 1 ‖x‖∞ ≤ 1
or or or

|x1|+ |x2| ≤ 1
(
|x1|2 + |x2|2

)1/2 ≤ 1 max{|x1|, |x2|} ≤ 1
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Norms

Let x = [x1, ..., xn]T ∈ Rn, then the norms for p = 1, p = 2, or p =∞
satisfy:

‖x‖1 =

n∑
i=1

|xi|

‖x‖2 =

(
n∑
i=1

|xi|2
) 1

2

‖x‖∞ = max
i
{|xi|}

Property (Norm)

Given an n-dimensional vector x = [x1, ..., xn]T , then:

‖x‖ > 0, if xi 6= 0 for some i,

‖x‖ = 0, if xi = 0 for all i.
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Norm – Example

Example: Consider x = [0.2, 0.4, 0.6, 0.8].

For p = 1,

‖x‖1 =

4∑
i=1

|xi| = 0.2 + 0.4 + 0.6 + 0.8 = 2.0

MatLab command is norm(x,1)

For p = 2,

‖x‖2 =

(
4∑
i=1

|xi|2
)1/2

=
√

0.04 + 0.16 + 0.36 + 0.64 = 1.0954

MatLab command is norm(x) or norm(x,2)

For p =∞,
‖x‖∞ = max

i
|xi| = 0.8

MatLab command is norm(x,inf)
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Cauchy-Schwarz Inequality and Equivalence

Property (Cauchy-Schwarz Inequality)

Consider two vectors, x = [x1, . . . , xn]T and y = [y1, . . . , yn]T , in Rn
(or Cn). Then

n∑
j=1

|xj ||yj | ≤

 n∑
j=1

|xj |2
 1

2
 n∑
j=1

|yj |2
 1

2

.

Definition (Norm Equivalency)

Two norms ‖ · ‖α and ‖ · ‖β are said to be equivalent if there exist
constants C and D and x ∈ Rn (or Cn) such that

C‖x‖α ≤ ‖x‖β ≤ D‖x‖α.

If norms are equivalent, then it doesn’t really matter which norm is
used for showing different properties.
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Norm Equivalence 1

It is easy to see with the Cauchy-Schwarz inequality that

‖x‖1 =

n∑
j=1

|xj | =

n∑
j=1

|xj | · 1 ≤

 n∑
j=1

|xj |2
 1

2
 n∑
j=1

1

 1
2

=
√
n‖x‖2

If ‖x‖1 = K, then |xj | ≤ K, so

‖x‖2 =

 n∑
j=1

|xj |2
 1

2

≤

 n∑
j=1

K|xj |

 1
2

≤
√
K‖x‖

1
2
1 = K = ‖x‖1.

It follows that ‖ · ‖1 and ‖ · ‖2 are equivalent as

1√
n
‖x‖1 ≤ ‖x‖2 ≤ ‖x‖1.
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Norm Equivalence 2

Relating to ‖ · ‖∞, we see immediately that

‖x‖1 =

n∑
j=1

|xj | ≤
n∑
j=1

‖x‖∞ = n‖x‖∞,

and clearly ‖x‖∞ ≤ ‖x‖1, so

‖x‖∞ ≤ ‖x‖1 ≤ n‖x‖∞,

which gives equivalency of the ‖ · ‖1 and ‖ · ‖∞ norms.

All of this can be strung together to show that:

‖x‖∞ ≤ ‖x‖2 ≤ ‖x‖1 ≤
√
n‖x‖2 ≤ n‖x‖∞,

which means that all of these norms are equivalent.
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Norm Equivalence 3

The fact that all these norms are equivalent means that one can
use whatever norm is most convenient.

The bounds will change, but we obtain limits on our estimates.

Depending on what we are attempting to accomplish, we will choose
different norms, each with their own special properties.

The ‖ · ‖2 is particularly important as

‖x‖2 = (〈x,x〉)
1
2 ,

where

〈x,y〉 =

n∑
j=1

xjy
∗
j

is an inner-product, providing important structure to our space.

‖ · ‖1 and ‖ · ‖∞ do NOT come from inner-products.
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Norm of a Matrix

Consider matrices A : Cn → Cn and B : Cn → Cn.

Property (Matrix Norm)

A matrix norm on the set of all n× n matrices is a real-valued
function, ‖ · ‖, defined on this set, satisfying for all n× n matrices A
and B and all real numbers α:

1 ‖A‖ ≥ 0 (positivity);

2 ‖A‖ = 0, if and only if A is 0, the matrix with all entries 0;

3 ‖αA‖ = |α|‖A‖ (scalar multiplication);

4 ‖A+B‖ ≤ ‖A‖+ ‖B‖ (triangle inequality);

5 ‖AB‖ ≤ ‖A‖‖B‖ (sub-multiplicative norm);
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p-Norm of a Matrix

p-Norm of a Matrix: There are a number of norms on a matrix.
The most common norm for a matrix is defined by the vector p-norms
for Rn

Definition (Matrix p-Norm)

If ‖ · ‖p is a vector norm on Rn, then

‖A‖p = max
‖x‖p=1

‖Ax‖p = max
‖x‖p 6=0

‖Ax‖p
‖x‖p

is a matrix norm.

The Matrix p-norm gives the relative expansion of matrix A

It follows that for any x

‖A‖p ≥
‖Ax‖p
‖x‖p

or ‖Ax‖p ≤ ‖A‖p‖x‖p
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p-Norm of a Matrix – Special Cases

When A is applied to a unit vector ‖x‖p, then ‖A‖p is the largest
image of ‖Ax‖p from all ‖x‖p = 1

Our primary interests are the cases p = 1, 2,∞, which are readily
computable

‖A‖1 = max
1≤j≤n

n∑
i=1

|aij | = maximum absolute column sum

‖A‖∞ = max
1≤i≤n

n∑
j=1

|aij | = maximum absolute row sum

‖A‖2 =
√
λmax(A∗A) = σmax(A), which is the square root of the

largest eigenvalue of A∗A, where A∗ is the conjugate transpose of
A. σmax(A) is the largest singular value of A
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Example

Example: Consider

A =

(
λ1 0
0 λ2

)
.

Computing the 2 norm:

‖Ax‖2 =
(
|λ1|2|x1|2 + |λ2|2|x2|2

) 1
2 .

If |λ1| > |λ2|, then choose x =

(
1
0

)
and it follows that

∥∥∥∥A( 1
0

)∥∥∥∥
2

= |λ1|,

so ‖A‖2 = |λ1|.
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Similarity and Exponential of Matrix

There are a number of definitions about matrices that are needed.

Definition (Similar Matrices)

Consider two n× n matrices, A,B. Matrix A is similar to B if there exists an
invertible matrix P such that

AP = PB or B = P−1AP.

Fact: Similar matrices have the same characteristic equation.

The exponential of a matrix is defined by a Taylor’s series.

Definition (eA)

Let A be an n× n matrix. The matrix exponential is defined by the following
series:

eA = I +A+
A2

2!
+ · · ·+

Ak

k!
+ · · · =

∞∑
k=0

Ak

k!
.
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Exponential of Matrix

The exponential of matrix is defined by the sum of the series:

eA = I +A+
A2

2!
+ · · ·+

Ak

k!
+ · · · =

∞∑
k=0

Ak

k!
.

This series only makes sense if it converges.

We show this series converges for any matrix A : Cn → Cn by defining the partial
sums and applying the Cauchy criterion for sequences.

Sk = I +A+
A2

2!
+ · · ·+

Ak

k!
.

From the sub-multiplicative norm property, ‖An‖ ≤ ‖A‖n.

The partial sums give for m > p

‖Sm − Sp‖ =

∥∥∥∥∥
m∑

k=p+1

Ak

k!

∥∥∥∥∥ ≤
m∑

k=p+1

‖Ak‖
k!
≤

m∑
k=p+1

‖A‖k

k!
.

Since ‖A‖ is a real number, from Calculus we know this last quantity can be made
arbitrarily small for sufficiently large p; and thus, this converges by the Cauchy
criterion.
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eAt Properties and Example

Property (Matrix Exponential Product)

If M and P commute (MP = PM), then

eM · eP = eM+P .

Example: Find eAt, where A =

(
3 1
0 3

)
=

(
3 0
0 3

)
+

(
0 1
0 0

)
. Since

the last two matrices commute, we have

eAt = exp

(
3 0
0 3

)
t · exp

(
0 1
0 0

)
t

=

(
e3t 0
0 e3t

)[
I +

(
0 1
0 0

)
t+

(
0 1
0 0

)2 t2

2!
+ . . .

]
.

However,

(
0 1
0 0

)2

=

(
0 0
0 0

)
, so the infinite series terminates after 2

terms. Thus,

eAt = e3t
(

1 t
0 1

)
=

(
e3t te3t

0 e3t

)
.
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Diagonalization 1

Consider the system of ODEs with A(n× n)

ẋ = Ax,

where A has n distinct real eigenvalues.

From Linear Algebra we have the following Theorem:

Theorem (Diagonalization)

Assume the matrix A(n× n) has the real distinct eigenvalues, λ1, λ2, . . . λn, then
any set of corresponding eigenvectors, {v1,v2, . . .vn} forms a basis of Rn, the
matrix P = [v1,v2, . . . ,vn] is invertible, and

P−1AP = D = diag[λ1, λ2, . . . λn].

Proof: Using the definition of eigenvalues and properties of matrices,

P−1AP = P−1A[v1,v2, . . . ,vn] = P−1[Av1, Av2, . . . , Avn]

= P−1[λ1v1, λ2v2, . . . , λnvn]

= [λ1P
−1v1, λ2P

−1v2, . . . , λnP
−1vn].
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Diagonalization 2

Proof (cont.): However, vj is the jth column of P and

P−1vj = jth column of P−1P = jth column of I,

which implies P−1AP = D. q.e.d.

Returning to our ODE with ẋ = Ax, we define the linear transformation

y = P−1x,

where P is defined in the Theorem above.

It follows that

x = Py,

ẏ = P−1ẋ = P−1Ax = P−1APy,

which leaves the uncoupled linear system:

ẏ = Dy = diag[λ1, λ2, . . . λn]y.
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Diagonalization 3

The uncoupled linear system:

ẏ = Dy =



λ1 0 . . . 0

0 λ2 0

.

.

.

.

.

.
. .

.
. .

. 0
0 . . . 0 λn

y

has the solution:

y(t) =



eλ1t 0 . . . 0

0 eλ2t 0

.

.

.

.

.

.
.
. .

.
. . 0

0 . . . 0 eλnt


y(0) ≡ eDty(0).

With y(0) = P−1x(0) and x(t) = Py(t) the solution to the original problem
becomes:

x(t) = P



eλ1t 0 . . . 0

0 eλ2t 0

.

.

.

.

.

.
.
.
.

.
.
. 0

0 . . . 0 eλnt


P

−1
x(0) ≡ eAtx(0).
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Example 1 1

Example 1: Consider the following system of ODEs:

ẋ =

 3 0 −4
−4 2 7
2 0 −3

x.

With the help of Maple, we find the eigenvalues and associated eigenvectors:

λ1 = 2, v1 =

 0
1
0

 , λ2 = 1, v2 =

 2
1
1

 , λ3 = −1, v3 =

 1
−1
1

 .

It follows that we want the following transformation matrix:

P =

 0 2 1
1 1 −1
0 1 1

 , with P
−1

=

 −2 1 3
1 0 −1
−1 0 2



where again Maple helps us with the inverse matrix.
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Example 1 2

Example 1: From our Theorem we have:

P
−1
AP = D =

 2 0 0
0 1 0
0 0 −1

 .

With the linear transformation y = P−1x, we obtain the uncoupled system:

ẏ = Dy,

which has the solution:

y(t) =

 e2t 0 0

0 et 0

0 0 e−t

y(0).

Transforming the system back to the original coordinates gives:

x(t) = P

 e2t 0 0

0 et 0

0 0 e−t

P−1
x(0) =


2 et − e−t 0 −2 et + 2 e−t

−2 e2 t + et + e−t e2 t 3 e2 t − et − 2 e−t

et − e−t 0 −et + 2 e−t

x(0).
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Example 1 3

Example 1: From above, our solution in the transformed coordinates satisfies:

y(t) =

 e2t 0 0

0 et 0

0 0 e−t

y(0).

Below we see a graph showing several trajectories for this solution.

The 4 trajectories begin near the y3-axis,
then asymptotically approach the y1y2-plane.

This system has an Unstable Node
in the y1 vs y2 plane (y3 = 0).

This system has Saddle Nodes
in the y1 vs y3 plane (y2 = 0)
or y2 vs y3 plane (y1 = 0).

Behavior is best viewed in the 2D projections.
See Maple worksheet.
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Jordan Canonical Form 1

When the system of ODEs with A(n× n)

ẋ = Ax,

has the algebraic multiplicities of eigenvalues of A agree with the geometric
multiplicities, then we can diagonalize the matrix with the n linearly
independent eigenvectors and readily solve the uncoupled system.

However, there are times when the geometric multiplicities are less than the
algebraic multiplicities, and the matrix A cannot be diagonalized.

Definition (Generalized Eigenspace)

Let A : V → V be a linear transformation on a complex vector space, and let λ be
a complex number. The generalized λ-eigenspace, Wλ, is the subspace of V
consisting of vectors v ∈ V such that

(A− λI)mv = 0,

for some positive integer m. The vector v is said to be a generalized eigenvector
of rank m, if m is the smallest positive integer such that v is in the kernel of
(A− λI)m.
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Jordan Canonical Form 2

Theorem (Jordan Canonical Form)

For each complex constant n× n matrix A, there exists a nonsingular matrix P such that the

matrix J = P−1AP is in the canonical form:

J =



J0 0 . . . 0

0 J1 0

.

.

.

.

.

.
.
.
.

.
.
. 0

0 . . . 0 Js

 ,

where J0 is a diagonal matrix with diagonal elements, λ1, λ2, . . . , λk, (not necessarily distinct)
and each Jp is an np × np matrix of the forms:

J0 =



λ1 0 . . . 0

0 λ2 0

.

.

.

.

.

.
.
.
.

.
.
. 0

0 . . . 0 λk

 and Jp =



λk+p 1 0 . . . 0

0 λk+p 1
.
.
.

.

.

.

.

.

.
. .

.
. .

.
. .

. 0

.

.

.
.
.
.

.
.
.

.
.
. 1

0 . . . . . . 0 λk+p


,

where p = 1, . . . , s and λk+p need not differ from λk+q if p 6= q and k+ n1 + · · ·+ ns = n. The
eigenvalues of A are λi, i = 1, 2, . . . , k + s with the simple eigenvalues appearing in J0.
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Jordan Canonical Form: Maple

Maple provides a toolbox (LinearAlgebra) that easily computes the Jordan
Canonical Form of a matrix.

A worksheet is available for the matrix:

A =

 0 1 0
0 0 1
2 3 0

 .

We show the commands CharacteristicPolynomial(A,z) and
Eigenvectors(A), giving the obvious results.

The command JordanForm allows finding the Jordan Canonical Form of A
and the Transition Matrix, Q, easily:

J =

 2 0 0
0 −1 1
0 0 −1

 and Q =


1
9

2
3

8
9

2
9
− 2

3
− 2

9

4
9

2
3

− 4
9

 .
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Fundamental Solution 1

Earlier we saw that if J0 was a k × k diagonal matrix, then the solution of
ẋ = J0x was

x(t) = eJ0tx(0),

where eJ0t = diag[eλ1t, eλ2t, . . . , eλkt].

Next we evaluate eJpt, where Jp = λk+pIp +Np and Np is an np × np matrix:

Np =



0 1 . . . 0

.

.

.
.
.
.

.
.
.

.

.

.

.

.

.
. .

.
. .

. 1
0 . . . . . . 0

 .

It is easy to see that λk+pIp and Np commute, so

e
Jpt = e

λk+pt



1 t . . . t
np−1

(np−1)!

.

.

.
.
.
.

.
.
.

.

.

.

.

.

.
.
.
.

.
.
. t

0 . . . . . . 1


.

Joseph M. Mahaffy, 〈jmahaffy@sdsu.edu〉
Lecture Notes – Linear Systems and Fundamental Solution
— (30/67)

Linear Systems of ODEs
Fundamental Solution

General Linear System

Jordan Form and Complex Eigenvalues
Stability of 2× 2 Systems

Fundamental Solution 2

We saw that any matrix A can be transformed into Jordan canonical form, J ,
which is in a block diagonal form with all the eigenvalues on the diagonal and
repeated eigenvalues with an eigenspace having a kernel or nullspace larger than
1 having ones on the superdiagonal.

The fundamental solution, Ψ(t), of ẏ = Jy satisfies:

Ψ(t) = e
Jt

=



eJ0t 0 . . . 0

0 eJ1t
.
.
.

.

.

.

.

.

.
. .

.
. .

. 0

0 . . . 0 eJst


.

because of the block structure of the matrix J .

It follows that the fundamental solution, Φ(t), of ẋ = Ax satisfies:

Φ(t) = eAt = ePJP
−1t = PeJtP−1.
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Example: Consider the system of linear homogeneous equations:

ẋ = Ax =

 −7 −5 −3
2 −2 −3
0 1 0

x.

The characteristic equation satisfies:

det

 −7− λ −5 −3
2 −2− λ −3
0 1 −λ

 = −(λ+ 3)3 = 0,

implying A has the eigenvalue λ = −3 with algebraic multiplicity = 3.

Examining A− λI gives: −7 + 3 −5 −3
2 −2 + 3 −3
0 1 3

 =

 −4 −5 −3
2 1 −3
0 1 3

 ∼
 2 1 −3

0 1 3
0 0 0

 ,

which is a rank 2 matrix, so ker(A+ 3I) is one-dimensional.
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Example: Since ker(A+ 3I) is one-dimensional, the geometric multiplicity of
λ = −3 is only one.

We compute (A+ 3I)2 and (A+ 3I)3 and find:

 −4 −5 −3
2 1 −3
0 1 3

2

=

 6 12 18
−6 −12 −18
2 4 6

 and

 −4 −5 −3
2 1 −3
0 1 3

3

= 0,

which implies the generalized eigenspace has dimension 3.

We create a Jordan basis by satisfying the following relations:

(A− λI)v1 = 0, (A− λI)v2 = v1, (A− λI)v3 = v2.

The process employed is called a Jordan chain, where we select a vector v3 in the
generalized eigenspace, which is R3 (which in this case cannot be in the eigenspace
of (A− λI)2).

It suffices to take v3 = [1, 0, 0]T .
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Example: With v3 = [1, 0, 0]T , we solve

v2 = (A− λI)v3 =

 −4 −5 −3
2 1 −3
0 1 3

 1
0
0

 =

 −4
2
0



and

v1 = (A− λI)v2 =

 −4 −5 −3
2 1 −3
0 1 3

 −4
2
0

 =

 6
−6
2


Thus, we obtain our linear transformation matrix:

P =

 6 −4 1
−6 2 0
2 0 0

 with P
−1

=


0 0 1

2

0 1
2

3
2

1 2 3

 .

It is not hard to see that

P
−1
AP =


0 0 1

2

0 1
2

3
2

1 2 3


 −7 −5 −3

2 −2 −3
0 1 0

 6 −4 1
−6 2 0
2 0 0

 =

 −3 1 0
0 −3 1
0 0 −3

 = J
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Example: From our results before, the fundamental solution of ẏ = Jy is given
by:

Ψ(t) = e
Jt

= e
−3t


1 t t2

2

0 1 t

0 0 1

 .

The the fundamental solution of ẋ = Ax is given by:

Φ(t) = e
At

= Pe
Jt
P

−1

=


3 e−3 tt2 − 4 e−3 tt + e−3 t −5 e−3 tt + 6 e−3 tt2 −3 e−3 tt + 9 e−3 tt2

−3 e−3 tt2 + 2 e−3 tt e−3 tt + e−3 t − 6 e−3 tt2 −3 e−3 tt− 9 e−3 tt2

e−3 tt2 e−3 tt + 2 e−3 tt2 e−3 t + 3 e−3 tt + 3 e−3 tt2



The general solution of ẋ = Ax satisfies:

x(t) = c1e
−3tv1 + c2e

−3t (tv1 + v2) + c3e
−3t

(
t2

2!
v1 + tv2 + v3

)
,

where v1, v2, and v3 are the respective columns of P .
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Jordan Form and Complex Eigenvalues 1

What happens to the Jordan canonical form when some of the eigenvalues are
complex?

If the eigenvalues come from a real matrix A and λ1 = α− iβ, then λ2 = α+ iβ
is another eigenvalue.

Suppose that A is a 2× 2 real matrix with eigenvalues, λ = α± iβ, then there
exists a complex matrix P , such that

P−1AP = J =

(
α− iβ 0

0 α+ iβ

)
.

Thus, a fundamental solution (complex) to ẏ = Jy satisfies:

Ψ(t) = eJt =

(
e(α−iβ)t 0

0 e(α+iβ)t

)
.

How are real fundamental solutions formed for this matrix A?
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With the 2× 2 real matrix A and λ = α± iβ, our theory gives the existence of a
complex matrix P , such P−1AP = J is a diagonal matrix with the eigenvalues
on the diagonal.

However, it is often preferable to transform A into the anti-symmetric matrix,
K:

K = Q−1AQ =

(
α β
−β α

)
,

where K is similar to A and Q has real entries.

Theorem (Complex Eigenvalues and Rotation-Scaling Matrices)

If the 2× 2 real matrix A has eigenvalues α± iβ (with β 6= 0), and if v + iw is an
eigenvector of A with eigenvalue α+ iβ, then

Q−1AQ =

(
α β
−β α

)
= K, where Q = [v w].
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Jordan Form and Complex Eigenvalues 3

The previous theorem provides the tools for transforming the 2× 2 real matrix A
with a 2× 2 real matrix Q into a similar 2× 2 real anti-symmetric matrix, K,
which is a rotation-scaling matrix.

This theorem generalizes to the higher dimensional eigenspaces to allow
transformation of any real matrix A into a real Jordan form matrix, where
complex eigenvalues are represented by real anti-symmetric blocks on the
diagonal.

It can be shown that the exponential of the anti-symmetric matrix, K, has the
following form:

eKt = eαt
(

cos(βt) sin(βt)
− sin(βt) cos(βt)

)
,

which gives the fundamental solution to the ODE, ẏ = Ky, given by

Ψ(t) = eKt.
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General Jordan Form with Complex Eigenvalues 1

Theorem (Real Jordan Canonical Form)

Let A be a real matrix with real eigenvalues, λj , j = 1, . . . , k and complex eigenvalues,

λj = αj + βj and λ̄j = αj − βj , j = k + 1, . . . , n. Then there exists a basis

{v1, . . . , vk, uk+1, wk+1, . . . , un, wn} for R2n−k, where vj , j = 1, . . . , n, are generalized
eigenvectors of A, the first k of these are real and uj = Re(vj), wj = Im(vj) for
j = k + 1, . . . , n. The matrix P = (v1| . . . |vk|uk+1|wk+1| . . . |un|wn) is invertible with

P
−1
AP =


J1 . . . 0

.

.

.
.
.
.

.

.

.
0 . . . Jr

 ,
where the elementary Jordan blocks, Ji, i = 1, . . . , r are either of the form of our previous
Theorem for Jordan Canonical Form for the real eigenvalues, λj , j = 1, . . . , k, or of the form

Jp =



Dp I2 0 . . . 0

0 Dp I2

.
.
.

.

.

.

.

.

.
.
.
.

.
.
.

.
.
. 0

.

.

.
.
. .

.
. . D I2

0 . . . . . . 0 Dp


,

where

Dp =

(
αp βp
−βp αp

)
, I2 =

(
1 0
0 1

)
, 0 =

(
0 0
0 0

)
,

for λp = αp + iβp a complex eigenvalue of A.
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General Jordan Form with Complex Eigenvalues 2

The Jordan Block matrices, Jp, in the previous theorem coming from the
complex eigenvalues, λp, λ̄p, depend on the algebraic and geometric
multiplicities.

For distinct complex eigenvalues or any complex pair, λk = αk ± iβk, with
algebraic and geometric multiplicities agreeing have a diagonal form similar to J0

in the previous theorem with diagonal elements,

Dk =

(
αk βk
−βk αk

)
.

When the complex pair, λp = αp ± iβp has algebraic multiplicity = 2m(m > 1)
with geometric multiplicity = 2, then Jp has the form shown above with m
diagonal blocks of the form Dp.
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We use the theorem for the real Jordan canonical form to find the
Fundamental Solution to the problem:

ẋ = Ax, x(0) = x0.

The Fundamental Solution satisfies:

x(t) = eAtx0 = PeJtP−1x0.

We have seen the form of blocks of eJt for real eigenvalues and distinct complex
eigenvalues.

Remains to show the block form of eJpt for Jp from the theorem above with
complex λp = αp ± iβp.
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For the 2m× 2m Jordan Block matrix, Jp, in the real Jordan canonical form

theorem, it can be shown that the Fundamental Solution, eJpt, for
λp = αp ± iβp with algebraic multiplicity = m, has the form:

e
Jpt = e

αpt



R Rt R t
2

2!
. . . R tm−1

(m−1)!

0 R Rt
. .

. R tm−2

(m−2)!

.

.

.
.
.
.

.
.
.

.
.
.

.

.

.

.

.

.
. .

.
. .

. R Rt
0 . . . . . . 0 R


,

where R is the rotation matrix

R =

(
cos(βt) sin(βt)
− sin(βt) cos(βt)

)

and each entry in the solution block above being a 2× 2 matrix.
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Example: Consider the following system of linear homogeneous equations:

ẋ = Ax =


0 1 0 0
0 0 1 0
0 0 0 1
−4 −8 −8 −4

x.

The characteristic equation satisfies:

(λ2 + 2λ+ 2)2 = 0,

which gives the eigenvalues, λ = −1± i with algebraic multiplicity of 2 each.

With the help of Maple, we obtain the eigenvectors:

v1 = (1,−1− i, 2i, 2− 2i)T and v2 = (1,−1 + i,−2i, 2 + 2i)T ,

associated with λ1 = −1− i and λ2 = −1 + i, respectively.

However, these only have geometric multiplicity of 1 each.
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Example: Maple readily gives the Jordan canonical form and its transition
matrix for the complex solution:

Jc =


−1− i 1 0 0

0 −1− i 0 0
0 0 −1 + i 1
0 0 0 −1 + i

 Pc =


− 1

2
+ i

2
1
2

+ i − 1
2
− i

2
1
2
− i

1 −i 1 i
−1− i i −1 + i −i

2i −2i −2i 2i

 ,

with:
Jc = P−1

c APc, and y = P−1
c x.

This gives the complex fundamental solution:

y(t) = e
Jcty(0) =


eλ1t teλ1t 0 0

0 eλ1t 0 0

0 0 eλ2t teλ2t

0 0 0 eλ2t

y(0).

Thus, a complex fundamental solution to the ẋ = Ax satisfies:

Φ(t) = Pce
JctP−1

c .
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Example: Our real Jordan canonical form theorem states we can find a
matrix J similar to A in the following form:

J =


−1 1 1 0
−1 −1 0 1
0 0 −1 1
0 0 −1 −1

 ,

where J = P−1AP for some transition matrix, P .

This gives the real fundamental solution:

Ψ(t) = e
Jt

= e
−t


cos(t) sin(t) t cos(t) t sin(t)
− sin(t) cos(t) −t sin(t) t cos(t)

0 0 cos(t) sin(t)
0 0 − sin(t) cos(t)

 .

Thus, a real fundamental solution to the ẋ = Ax satisfies:

Φ(t) = PeJtP−1.
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Example: For the fundamental solution in x(t) the previous Slide shows that
we need non-singular matrix P and P−1, where A is similar to J .

A is a companion matrix, so eigenvectors have the form v = [1, λ, λ2, λ3]T .

The columns of P consists of the eigenvectors of A with the real and imaginary
parts creating two columns of P for the real Jordan canonical form.

The second eigenvector comes from the second null space of A and takes more
work to obtain the transformation matrix, P , for the real Jordan canonical
form (see Maple jordan sheet):

P =


1 0 2 1
−1 1 −2 1
0 −2 0 −2
2 2 2 0

 , P
−1

=


2 3 5

2
1

−1 −1 −1 0

−1 −2 − 3
2
− 1

2

1 1 1
2

0



where J = P−1AP .

Thus, a real solution to the ẋ = Ax with x(0) = x0 is given by:

x(t) = PeJtP−1x0.
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Stability of 2× 2 Systems

Consider the system

ẋ = Jx,

where J is a 2× 2 matrix.

Let λ1 and λ2 be
eigenvalues of Jx

Results from Linear Algebra
give tr(J) = λ1 + λ2,
det |J| = λ1 · λ2, and
D = (j11 − j22)2 + 4j12j21

The figure shows the
Stability Diagram for
ẋ = Jx with axes
of tr(J) vs det |J|
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General Linear System

Consider the general linear system given by:

ẋ = A(t)x + g(t), x(t0) = x0, (1)

where A(t) is an n× n matrix and g(t) is an n vector.

Theorem (Existence and Uniqueness)

If A(t) and g(t) are continuous on the interval t ∈ [a, b] with t0 ∈ [a, b]
and ‖x0‖ <∞, then the system (1) has a unique solution, Φ(t)
satisfying the initial condition, Φ(t0) = x0, and existing on the
interval t ∈ [a, b].

The proof of this theorem uses the continuity, hence boundedness of A(t) and g(t)
for t ∈ [a, b]. It also requires a property known as Gronwall’s inequality. These
details are left for the interested reader to explore.
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General Homogeneous Linear System 1

Now consider the general linear homogeneous system given by:

ẋ = A(t)x, x(t0) = x0, (2)

where A(t) is an n× n continuous matrix.

The previous theorem significantly states that there is the unique
solution (trivial) Φ0(t) ≡ 0, given the initial condition x0 = 0.
(Inspection shows the trivial solution is always a solution to (2).)

Similarly, (2) has unique solutions Φ1(t),Φ2(t), . . . ,Φn(t) with
Φj(t0) = ej , where ej is the jth basis vector of Rn.

The set {Φ1(t),Φ2(t), . . . ,Φn(t)} form a linearly independent set
for t ∈ [a, b].
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Theorem (Solution Vector Space)

If the complex n× n matrix A(t) is continuous on an interval
t ∈ [a, b], then the solutions of the system (2) on t ∈ [a, b] form a
vector space of dimension n over the complex numbers.

Let
Φ(t) = [Φ1(t),Φ2(t), . . . ,Φn(t)]

be an n× n matrix created with the column solutions Φj(t).

Clearly by the composition

Φ̇(t) = A(t)Φ(t) with Φ(t0) = I.

The solution Φ(t) forms a fundamental set of solutions to (2) on
t ∈ [a, b], where any solution:

x(t) = Φ(t)c

for some appropriate c.
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General Homogeneous Linear System 3

Theorem (Abel’s Formula)

If Φ(t) is a solution matrix of (2) on t ∈ [a, b] and if t0 ∈ [a, b], then

det Φ(t) = det Φ(t0)exp

∫ t

t0

n∑
j=1

ajj(s)ds

 , for every t ∈ [a, b].

It follows that either det Φ(t) 6= 0 for each t ∈ [a, b] or det Φ(t) = 0 for
every t ∈ [a, b].
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General Homogeneous Linear System 4

The following Corollary immediately follows from Abel’s formula.

Corollary

A solution matrix Φ(t) of (2) on t ∈ [a, b] is a fundamental matrix
of (2) on t ∈ [a, b] if and only if det Φ(t) 6= 0 for every t ∈ [a, b].

The initial value problem for the general linear homogeneous
system satisfies:

ẋ = A(t)x, x(t0) = x0,

where A(t) is an n× n continuous matrix.

Theorem (Unique Solution)

Assume that Φ(t) is a fundamental matrix solution of (2) on
t ∈ [a, b]. Then the unique solution of the initial value problem is
given by:

x(t) = Φ(t)Φ−1(t0)x0.
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Example: Consider the non-constant system of linear ODEs with t > 0:

ẋ =

(
0 1

4
t2

− 1
t

)
x, x(1) = x0 =

(
x01

x02

)
. (3)

Verify that the following are solutions to (3):

Φ1(t) =

(
t−2

−2t−3

)
and Φ2(t) =

(
t2

2t

)
.

Solution: From the system of ODEs we have

Φ̇1 =

(
−2t−3

6t−4

)
and A(t)Φ1(t) =

(
0 1

4
t2

− 1
t

)(
t−2

−2t−3

)
=

(
−2t−3

6t−4

)
.

Φ̇2 =

(
2t
2

)
and A(t)Φ2(t) =

(
0 1

4
t2

− 1
t

)(
t2

2t

)
=

(
2t
2

)
.

Hence, it follows that Φ1(t) and Φ2(t) solve the system of ODEs.
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Example with A(t) 2

Verify that Φ(t) = [Φ1(t),Φ2(t)] forms a fundamental solution to
(3).

Solution: We demonstrated that the columns of Φ are solutions of
(3), so the Corollary to Abel’s Formula states that it suffices to
verify that det Φ(t) 6= 0.

det Φ(t) = det

∣∣∣∣ t−2 t2

−2t−3 2t

∣∣∣∣ =
4

t
6= 0 for t > 0.

Find a fundamental solution, Ψ(t) with Ψ(1) = I.

Solution: Solve:

c1Φ1(1) + c2Φ2(1) =

(
1
0

)
and

d1Φ1(1) + d2Φ2(1) =

(
0
1

)
.
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Example with A(t) 3

Equivalently,

c1

(
1
−2

)
+ c2

(
1
2

)
=

(
1
0

)
or c1 = c2 =

1

2
.

and

d1

(
1
−2

)
+ d2

(
1
2

)
=

(
0
1

)
or d1 = −d2 = −

1

4
.

It follows that another fundamental solution with Ψ(1) = I is given by:

Ψ(t) =

(
t2+t−2

2
t2−t−2

4

t− t−3 t+t−3

2

)
.

With this fundamental solution, we readily obtain the unique solution to (3)
given by:

x(t) = Ψ(t)x0 =

(
t2+t−2

2
t2−t−2

4

t− t−3 t+t−3

2

)(
x01

x02

)

Joseph M. Mahaffy, 〈jmahaffy@sdsu.edu〉
Lecture Notes – Linear Systems and Fundamental Solution
— (55/67)

Linear Systems of ODEs
Fundamental Solution

General Linear System

Homogeneous System
Linear Nonhomogeneous System

Example with A(t) 4

How does we find a solution to (3) (without Maple)?

Solution: Earlier we showed how to transform 2nd order ODEs in
systems of 1st order ODEs, so here we reverse the process.

The 1st row of (3) gives ẋ1(t) = x2(t), so
ẋ2 = ẍ1 = 4

t2x1 −
1
tx2 = 4

ttx1 −
1
t ẋ1, or

t2ẍ1 + tẋ1 − 4x1 = 0.

This is a Cauchy-Euler equation (solutions x1(t) = tr) with the
auxiliary equation:

r(r − 1) + r − 4 = r2 − 4 = 0 or r = ±2.

It readily follows that

x1(t) = c1t
−2 + c2t

2 and x2(t) = −2c1t
−3 + 2c2t.
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Linear Nonhomogeneous System

Our work on Fundamental Solutions is a critical basis for solving
the nonhomogeneous problem.

Consider the general linear nonhomogeneous system given by:

ẋ = A(t)x + g(t), x(t0) = x0, (4)

where both A(t) and g(t) are continuous on some interval I.

Theorem (Variation of Constants Formula)

Let Φ(t) be a fundamental matrix solution of ẋ = A(t)x. Then
the unique solution of (4) is given by:

x(t) = Φ(t)Φ−1(t0)x0 + Φ(t)

∫ t

t0

Φ−1(s)g(s)ds.
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Proof for Variation of Constants

The variation of constants formula in our theorem states that given a
particular solution, then all other solutions only differ by the solution of the
homogeneous equation.

To find the particular solution, assuming we know a fundamental matrix
solution, Φ(t), to the homogeneous equation, we attempt Ψp of the form:

Ψp(t) = Φ(t)v(t),

with v(t) to be determined.

Differentiating gives:

Ψ̇p(t) = Φ̇(t)v(t) + Φ(t)v̇(t) = A(t)Φ(t)v(t) + g(t).

With Φ(t) solving the homogeneous problem, the Φ̇(t) cancels A(t)Φ(t), leaving

Φ(t)v̇(t) = g(t).

Since Φ(t) is nonsingular, integration yields the particular solution:

v(t) =

∫ t

t0

Φ−1(s)g(s)ds or Ψp(t) = Φ(t)

∫ t

t0

Φ−1(s)g(s)ds.
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Constant Linear Nonhomogeneous System

For the case when we have a constant matrix A, then the linear
nonhomogeneous system given by:

ẋ = Ax + g(t), x(0) = x0, (5)

where g(t) are continuous on some interval I has a simpler
formulation.

Corollary (Variation of Constants Formula)

Let eAt be a fundamental matrix solution of ẋ = Ax. Then the
unique solution of (5) is given by:

x(t) = eAtx0 +

∫ t

0

eA(t−s)g(s)ds,

where e−As =
(
eAs
)−1

.
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Example: Linear Nonhomogeneous System 1

Example: Consider the linear nonhomogeneous system given by:

ẋ = Ax + g(t) =

(
0 1
−1 0

)
x +

(
0
t

)
, with x(0) =

(
c1
c2

)
.

The matrix A is in our real Jordan canonical form, which implies
we can immediately write the fundamental matrix solution:

eAt =

(
cos(t) sin(t)
− sin(t) cos(t)

)
.

It is easy to see that the inverse satisfies:

e−At =

(
cos(t) − sin(t)
sin(t) cos(t)

)
.
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Example: Linear Nonhomogeneous System 2

Example: Next we compute the particular solution:

xp(t) = eAt
∫ t

0
e−Asg(s)ds,

=

(
cos(t) sin(t)
− sin(t) cos(t)

)∫ t

0

(
−s sin(s)
s cos(s)

)
ds

=

(
cos(t) sin(t)
− sin(t) cos(t)

)(
− sin(t) + t cos(t)

cos(t) + t sin(t)− 1

)

=

(
t− sin(t)
1− cos(t)

)

With the initial condition, the unique solution becomes:

x(t) = eAtx(0) + xp(t) =

(
c1 cos(t) + c2 sin(t) + t− sin(t)
−c1 sin(t) + c2 cos(t) + 1− cos(t)

)
.
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Example 2: Linear Nonhomogeneous System 1

Example: Consider the linear nonhomogeneous system given by:

ẋ = Ax + g(t) =

2 1 1
0 2 0
0 0 3

x +

1
0
t

 , with x(0) =

1
1
1

 .

It should be no surprise that Maple can readily solve this equation.

It is also apparent that the eigenvalues are λ1 = 3 with algebraic
and geometric multiplicity of one and associated eigenvector,
v1 = [1, 0, 1]T

and λ2 = 2 with algebraic and geometric multiplicities of two
and one, respectively, and associated eigenvector, v2 = [1, 0, 0]T .

It follows that the Jordan canonical form is given by

J =

3 0 0
0 2 1
0 0 2

 .
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Example 2: Linear Nonhomogeneous System 2

Example: The previous slide gives the Jordan canonical form, J ,
and with the help of Maple we obtain the transition matrix, P ,
and its inverse, P−1:

J =

3 0 0
0 2 1
0 0 2

 , P =

1 −1 −1
0 0 −1
1 0 0

 , P−1 =

 0 0 1
−1 1 1
0 −1 0

 .

The fundamental matrix solution follows readily from the
Jordan canonical form:

eJt =

e3t 0 0
0 e2t t e2t

0 0 e2t

 .

The fundamental matrix solution of the homogeneous part of
the original ODE follows readily from:

eAt = PeJtP−1 =

e2t t e2t e3t − e2t
0 e2t 0
0 0 e3t

 .
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Example 2: Linear Nonhomogeneous System 3

Example: The variation of constants formula gives:

x(t) = eAtx0 +

∫ t

0

eA(t−s)g(s)ds.

or

x(t) =

e2t t e2t e3t − e2t
0 e2t 0
0 0 e3t

1
1
1



+

∫ t

0

e2(t−s) (t− s)e2(t−s) e3(t−s) − e2(t−s)

0 e2(t−s) 0

0 0 e3(t−s)

1
0
s

 ds.

Thus,

x(t) =

t e2t + e3t

e2t

e3t

+

∫ t

0

(1− s)e2(t−s) + s e3(t−s)

0

s e3(t−s)

 ds.
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Example 2: Linear Nonhomogeneous System 4

Example: From before the variation of constants formula gives:

x(t) =

t e2t + e3t

e2t

e3t

+

∫ t

0

(1− s)e2(t−s) + s e3(t−s)

0

s e3(t−s)

 ds.

We let Maple perform these integrations, and the net result is:

x =


10
9 e

3t +
(
t+ 1

4

)
e2t + t

6 −
13
36

e2t

10
9 e

3t − t
3 −

1
9

 ,

which is the unique solution to this example’s initial value

problem.
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Example 3: Linear Nonhomogeneous System 1

Example: Consider the non-constant, nonhomogeneous system of
linear ODEs with t > 0:

ẋ =

(
0 1

4
t2 − 1

t

)
x +

(
10 t2

8

)
, x(1) =

(
4
4

)
. (6)

In an earlier example, we demonstrated that a fundamental
solution to the homogeneous part of (6) was given by:

Φ(t) =

(
1
t2 t2

− 2
t3 2t

)
.

We also showed that det |Φ(t)| = 4
t so it follows that:

Φ−1(t) =

(
t2

2 − t
3

4

1
2t2

1
4t

)
.
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Example 3: Linear Nonhomogeneous System 2

With the fundamental solution, Φ(t), the variation of
constants formula is applied giving:

x(t) = Φ(t)Φ−1(1)x0 + Φ(t)

∫ t

1
Φ−1(s)g(s)ds,

=

(
1
t2

t2

− 2
t3

2t

)(
1
2
− 1

4

1
2

1
4

)(
4
4

)
+

(
1
t2

t2

− 2
t3

2t

)∫ t

1

(
s2

2
− s

3

4

1
2s2

1
4s

)(
10 s2

8

)
ds,

=

(
1
t2

+ 3t2

− 2
t3

+ 6t

)
+

(
1
t2

t2

− 2
t3

2t

)∫ t

1

(
5s4 − 2s3

5 + 2
s

)
ds,

=

(
1
t2

+ 3t2

− 2
t3

+ 6t

)
+

(
1
t2

t2

− 2
t3

2t

)(
t5 − t4

2
− 1

2

5t+ 2 ln(t)− 5

)
,

=

(
2t2 ln(t) + 6t3 − 5

2
t2 + 1

2t2

4t ln(t) + 8t2 − 3t− 1
t3

)
,

which gives the unique solution to our initial value problem.
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