Homework 2 - ODEs and Scaling Due Fri. 9/20

Work the following problems.

1. Consider the differential equation

$$
\dot{v}+\tilde{k} \cos (\omega t) v=-g
$$

a. Using scaling arguments, show that you can turn this equation into

$$
\frac{d \tilde{v}}{d \tau}+\gamma \cos (\tau) \tilde{v}=-1
$$

b. Solve this equation with initial condition $\tilde{v}(0)=\tilde{v}_{0}$. Does your initial condition matter as $\tau \rightarrow \infty$? In your solution, you should get the integral

$$
\int_{0}^{\tau} e^{\gamma \sin (x)} d x
$$

Show that you cannot have a 2π periodic solution to the problem because of this integral.
c. Suppose that γ is small, which we denote by $\gamma \ll 1$. This means that γ^{2} is much smaller than γ, γ^{3} is smaller yet still and so forth. Using a Taylor series expansion for the integrand, show that you can approximate the integral as

$$
\begin{aligned}
\int_{0}^{\tau} e^{\gamma \sin (x)} d x= & \tau-\gamma(\cos (\tau)-1)+\frac{\gamma^{2}}{4}\left(\tau-\frac{\sin (2 \tau)}{2}\right) \\
& +\frac{\gamma^{3}}{6}\left(\frac{2}{3}-\cos (\tau)+\frac{\cos ^{3}(\tau)}{3}\right)+\mathcal{O}\left(\gamma^{4}\right)
\end{aligned}
$$

The notation $\mathcal{O}\left(\gamma^{4}\right)$ means all terms as small or smaller than γ^{4}, so basically everything you are truncating by not carrying the Taylor series out to an infinite number of terms. Which terms in this expansion are causing the solution to behave in a non-periodic fashion?
d. With your Taylor series expansions in γ, give your approximate solution, $\tilde{v}(\tau)$, up to and including terms of γ^{2}, i.e.,

$$
\tilde{v}(\tau)=f_{0}(\tau)+\gamma f_{1}(\tau)+\gamma^{2} f_{2}(\tau)+\mathcal{O}\left(\gamma^{3}\right)
$$

finding f_{0}, f_{1}, and f_{2}.
e. Let $\gamma=0.1$ and $\tilde{v}(0)=10$. Graph the "exact" solution, using an ODE solver (such as MatLab's ODE23) and your expansions including only terms up to order γ and γ^{2} (2 truncations).
2. Using the transformation $x=\cos (\theta)$, rewrite the diffential equation

$$
\frac{d}{d x}\left(\left(1-x^{2}\right) \frac{d y}{d x}\right)+\gamma y=0
$$

in terms of the new independent variable θ.
3. Suppose you need to solve the problem

$$
\frac{d y}{d t}+\alpha \cos (\omega t) y=\beta \sin (\omega t), y(0)=y_{0}
$$

and that you know that $\omega / \alpha=200$.
a. Rescale the problem so that you can write it as

$$
\frac{d \tilde{y}}{d \tau}+\epsilon \cos (\tau) \tilde{y}=\epsilon \sin (\tau), \tilde{y}(0)=\tilde{y}_{0}
$$

What is ϵ and why?
b. Solve this problem up to $\mathcal{O}\left(\epsilon^{2}\right)$, i.e., find the function $\tilde{y}_{1}(\tau)$ so that the solution $\tilde{y}(\tau)$ is written as

$$
\tilde{y}(\tau)=\tilde{y}_{0}+\epsilon \tilde{y}_{1}(\tau)+\mathcal{O}\left(\epsilon^{2}\right)
$$

What happens to $\tilde{y}_{1}(\tau)$ as τ becomes large?

