$$
\left[\begin{array}{ll}
>y:=t \rightarrow 3 \cdot \exp (-t) \cdot \cos (2 \cdot t) ; & \text { \# This enters a function. } \\
& y:=t \rightarrow 3 \mathrm{e}^{-t} \cos (2 t)
\end{array}\right.
$$

The arrow is created by typing - and $>$. The multiplication is *. Exponentiation uses ^. The := in Maple means "defined to be."
$\stackrel{\log }{ } \mathrm{plot}(y(t), t=0 . .2 \cdot \mathrm{Pi}) ; \quad$ \# This plots the function

> $\quad d y:=\operatorname{diff}(y(t), t) ; \quad$ \# This differentiates the function

$$
\begin{equation*}
d y:=-3 \mathrm{e}^{-t} \cos (2 t)-6 \mathrm{e}^{-t} \sin (2 t) \tag{2}
\end{equation*}
$$

Maple stores the derivative of $\mathrm{y}(\mathrm{t})$ as dy .
> tmin $:=f$ solve $(d y=0, t=1 . .2) ; y($ tmin $) ;$ \# This finds the minimum

$$
\text { tmin }:=1.338972522
$$

$$
-0.7033279401
$$

(3)

The absolute minimum occurs at (1.33897, -0.703328).
fsolve solves an equation, and here the solution search is restricted between 1 and 2 .
$>$ tmax $:=f$ solve $(d y=0, t=2.5$..3.5 $) ; y($ tmax $) ;$ \# This finds a local maximum tmax := 2.909768849
0.1462075142
$>\operatorname{int}(y(t), t) ;$ \# This finds the indefinite integral

$$
\begin{equation*}
-\frac{3}{5} \mathrm{e}^{-t} \cos (2 t)+\frac{6}{5} \mathrm{e}^{-t} \sin (2 t) \tag{5}
\end{equation*}
$$

> $\operatorname{int}(y(t), t=0 . .5) ; \operatorname{evalf}(\%) ;$ \# This finds the definite integral from 0 to 5

$$
\begin{gather*}
\frac{3}{5}-\frac{3}{5} \mathrm{e}^{-5} \cos (10)+\frac{6}{5} \mathrm{e}^{-5} \sin (10) \\
0.5989934692 \tag{6}
\end{gather*}
$$

[The evalf function gives decimal values, while \% means evaluate the previous expression
$>s d y:=\operatorname{diff}(y(t), t \$ 2) ; \quad$ \# This takes the second derivative of $y(t)$

$$
\begin{equation*}
s d y:=-9 \mathrm{e}^{-t} \cos (2 t)+12 \mathrm{e}^{-t} \sin (2 t) \tag{7}
\end{equation*}
$$

We want to see if $y(t)$ satisfies the differential equation $y^{\prime \prime}+2 y^{\prime}+5 y=0$.
$>s d y+2 \cdot d y+5 \cdot y(t) ;$
0
$[>d e:=\operatorname{diff}(Y(t), t \$ 2)+2 \cdot \operatorname{diff}(Y(t), t)+5 \cdot Y(t)=0$;

$$
\begin{equation*}
d e:=\frac{\mathrm{d}^{2}}{\mathrm{~d} t^{2}} Y(t)+2\left(\frac{\mathrm{~d}}{\mathrm{~d} t} Y(t)\right)+5 Y(t)=0 \tag{8}
\end{equation*}
$$

$>$ dsolve $(d e, Y(t)) ; \quad$ \# This solves the differential equation

$$
\begin{equation*}
Y(t)=_C 1 \mathrm{e}^{-t} \sin (2 t)+_C 2 \mathrm{e}^{-t} \cos (2 t) \tag{10}
\end{equation*}
$$

$>$ dsolve $\{$ de, $Y(0)=2, \mathrm{D}(Y)(0)=-1\}, Y(t))$; \# This solves the initial value problem

$$
\begin{equation*}
Y(t)=\frac{1}{2} \mathrm{e}^{-t} \sin (2 t)+2 \mathrm{e}^{-t} \cos (2 t) \tag{11}
\end{equation*}
$$

$>Y:=$ unapply $(r h s(\%), t)$; This transforms the solution into the function $Y(t)$

$$
\begin{equation*}
Y:=t \rightarrow \frac{1}{2} \mathrm{e}^{-t} \sin (2 t)+2 \mathrm{e}^{-t} \cos (2 t) \tag{12}
\end{equation*}
$$

$\gg \operatorname{plot}(Y(t), t=0 . .2 \cdot \mathrm{Pi})$;

