Outline

Math 537 －Ordinary Differential Equations
 Lecture Notes－Introduction to Math 537

> Joseph M. Mahaffy,\langle jmahaffy@sdsu.edu〉

Department of Mathematics and Statistics Dynamical Systems Group
Computational Sciences Research Center
San Diego State University
San Diego，CA 92182－7720
http：／／jmahaffy．sdsu．eduThe Class－Overview
－Contact Information，Office Hours
－Text \＆Topics
－Grading and Expectations
（2）The Class．
－MatLab
（3）Review of ODEs
－Radioactive Decay
－Mass－Spring
－Power Series

Fall 2019

Contact Information，Office Hours

Grading and Expectations

Basic Information

Professor Joseph Mahaffy

Office	GMCS－593
Email	jmahaffy＠sdsu．edu
Web	http：／／jmahaffy．sdsu．edu
Phone	（619）594－3743
Office Hours	MW：10－11：50 at GMCS 593 and by Appointment

Prerequisites：Math 254 and Math 337
There is NO TEXT assigned to this course．
The topics are varied and come from multiple sources．
Lecture page on website will contain notes developed and a list of potential references and hyperlinks for this course．

Approximate Grading

Course Topics

Linear Ordinary Differential Equations (ODEs) (Review)(2)

Scaling ODEsFundamental Solutions ($e^{A t}$)Power Series - Method of FrobeniusSingular Perturbation MethodsMultiple Time Scales (?)

MatLab

- Missed midterm exams: Don't miss exams! The instructor reserves the right to schedule make-up exams, modify the type and nature of this make-up, and/or base the grade solely on other work (including the final exam).
- Missed final exam: Don't miss the final! Contact the instructor ASAP or a grade of incomplete or F will be assigned.
- Academic honesty: Submit your own work. Any cheating will be reported to University authorities and a ZERO will be given for that HW assignment or Exam.

Review from Math 337

- This course extends topics from Math 337: Elementary Ordinary Differential Equations (ODEs).
- Most problems relate to the linear ODEs, scalar and systems.
- Differential equations are very important in many modeling situations, so often these connections will be pointed out.

- Students can obtain MatLab from EDORAS Academic Computing.
- Google SDSU MatLab or access
https://edoras.sdsu.edu/ download/matlab.html.
- MatLab and Maple can also be accessed in the Computer Labs GMCS 421, 422, and 425 and the Library.
- A discounted student version of Maple is available (link available on the HW Assignment page).

Harmonic Oscillator：A Hooke＇s law spring exerts a force that is proportional to the displacement of the spring．
－Newton＇s law of motion：Mass times the acceleration equals the force acting on the mass．
－The simplest spring－mass problem is

$$
m y^{\prime \prime}=-k y \quad \text { or } \quad y^{\prime \prime}+\omega^{2} y=0,
$$

where $\omega^{2}=\frac{k}{m}$ ．
－This is a second order，linear，homogeneous differential equation．
－The characteristic equation is

$$
\lambda^{2}+\omega^{2}=0 \quad \text { or } \quad \lambda= \pm i \omega .
$$

5050

	The Class－Overview Review of ODEs	Radioactive Decay Mass－Spring Power Series	
Mass－Spring			3

Mass－Spring：The characteristic equation and eigenvalues of A are the same as before：

$$
\operatorname{det}|A-\lambda I|=\operatorname{det}\left|\begin{array}{cc}
-\lambda & 1 \\
-\omega^{2} & -\lambda
\end{array}\right|=\lambda^{2}+\omega^{2}=0,
$$

so $\lambda= \pm i \omega$（purely imaginary eigenvalues）．
For $\lambda_{1}=i \omega$ ，we have：

$$
\left(\begin{array}{cc}
-\lambda_{1} & 1 \\
-\omega^{2} & -\lambda_{1}
\end{array}\right)\binom{\xi_{1}}{\xi_{2}}=\left(\begin{array}{cc}
-i \omega & 1 \\
-\omega^{2} & -i \omega
\end{array}\right)\binom{\xi_{1}}{\xi_{2}}=\binom{0}{0}
$$

This results in the eigenvector $\xi^{(1)}=\binom{1}{i \omega}$ ．
We have $\lambda_{2}=\bar{\lambda}_{1}$ and $\xi^{(2)}=\bar{\xi}^{(1)}$ ．
Mass－Spring：With eigenvalues，$\lambda= \pm i \omega$ the general solution is：

$$
y(t)=c_{1} \cos (\omega t)+c_{2} \sin (\omega t)
$$

where the constants c_{1} and c_{2} depend on the initial displacement and velocity．
We rewrite this $2^{\text {nd }}$ order ODE as a first order system by letting $y(t)=y_{1}(t)$ and $\dot{y}_{1}(t)=y_{2}(t)$ ，so

$$
\begin{aligned}
& \dot{y}_{1}=y_{2}, \\
& \dot{y}_{2}=-\omega^{2} y_{1} .
\end{aligned}
$$

This becomes the $1^{\text {st }}$ order ODE system：

$$
\binom{\dot{y}_{1}}{\dot{y}_{2}}=\left(\begin{array}{cc}
0 & 1 \\
-\omega^{2} & 0
\end{array}\right)\binom{y_{1}}{y_{2}} \quad \text { or } \quad \dot{\mathbf{y}}=A \mathbf{y} .
$$

The ClassThe Class．．． Review of ODEs	Radioactive Decay Mass－Spring Power Series
MasS－Spring	

Mass－Spring：It follows that the vector solution is given by：

$$
\begin{aligned}
\mathbf{y}_{1}(t) & =\binom{1}{i \omega}(\cos (\omega t)+i \sin (\omega t))= \\
\mathbf{u}(t)+i \mathbf{w}(t) & =\binom{\cos (\omega t)}{-\omega \sin (\omega t)}+i\binom{\sin (\omega t)}{\omega \cos (\omega t)}
\end{aligned}
$$

Since the real solution， $\mathbf{u}(t)$ ，and the imaginary solution， $\mathbf{w}(t)$ ， are linearly independent solution，we take the linear combination to obtain the general real solution：

$$
\binom{y_{1}(t)}{y_{2}(t)}=c_{1}\binom{\cos (\omega t)}{-\omega \sin (\omega t)}+c_{2}\binom{\sin (\omega t)}{\omega \cos (\omega t)} .
$$

Mass－Spring

Mass－Spring：If we let $\omega=2$ ，then the figure below gives the phase portrait for this system．

This is a center
All solutions form ellipses around the origin．

The horizontal axis is the displacement，while the vertical axis is the velocity．

Chebyshev＇s Equation

Chebyshev＇s Equation is given by

$$
\left(1-x^{2}\right) y^{\prime \prime}-x y^{\prime}+\alpha^{2} y=0
$$

Let $\alpha=4$ and try a solution of the form
$y(x)=\sum_{n=0}^{\infty} a_{n} x^{n}, \quad$ so $\quad y^{\prime}(x)=\sum_{n=1}^{\infty} n a_{n} x^{n-1} \quad$ and $\quad y^{\prime \prime}(x)=\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}$
These are inserted into the Chebyshev Equation to give：

$$
\left(1-x^{2}\right) \sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}-x \sum_{n=1}^{\infty} n a_{n} x^{n-1}+16 \sum_{n=0}^{\infty} a_{n} x^{n}=0
$$

Note that the first two sums could start their index at $n=0$ without changing anything

The ClassThe Classw．．． Review of ODEs	Radioactive Decay Mass－Spring Power Series
Chebyshev＇s Equation	

Chebyshev＇s Equation：The previous expression gives the recurrence relation：

$$
a_{n+2}=\frac{n^{2}-16}{(n+2)(n+1)} a_{n} \quad \text { for } \quad n=0,1, . .
$$

As before，a_{0} and a_{1} are arbitrary with $y(0)=a_{0}$ and $y^{\prime}(0)=a_{1}$ It follows that

$$
a_{2}=-\frac{16}{2} a_{0}=-8 a_{0}, \quad a_{4}=\frac{4-16}{4 \cdot 3} a_{2}=8 a_{0}, \quad a_{6}=0=a_{8}=\ldots=a_{2 n}
$$

and

$$
a_{3}=-\frac{15}{3 \cdot 2} a_{1}=-\frac{5}{2} a_{1}, \quad a_{5}=-\frac{7}{5 \cdot 4} a_{3}=\frac{7}{8} a_{1}, \quad a_{7}=\frac{9}{7 \cdot 6} a_{5}=\frac{3}{16} a_{1}, \ldots
$$

Chebyshev＇s Equation with $\alpha=4$ ：From the recurrence relation，we see that the even series terminates after x^{4} ，leaving a $4^{\text {th }}$ order polynomial solution．
The general solution becomes：

$$
\begin{aligned}
y(x)= & a_{0}\left(1-8 x^{2}+8 x^{4}\right) \\
& +a_{1}\left(x-\frac{5}{2} x^{3}+\frac{7}{8} x^{5}+\frac{3}{16} x^{7}+\ldots\right) \\
y(x)= & a_{0}\left(1-8 x^{2}+8 x^{4}\right) \\
& +a_{1}\left(x+\sum_{n=1}^{\infty} \frac{\left[(2 n-1)^{2}-16\right]\left[(2 n-3)^{2}-16\right] \cdots \cdots\left(3^{2}-16\right)(1-16)}{(2 n+1)!} x^{2 n+1}\right)
\end{aligned}
$$

Chebyshev＇s Equation：More generally，it is not hard to see that for any α an integer，the Chebyshev＇s Equation results in one solution being a polynomial of order α（only odd or even terms）．The other solution is an infinite series．
The polynomial solution converges for all x ，while the infinite series solution converges for $|x|<1$ ．

In this course we＇ll examine what happens when the power series is expanded around a singular point．

