Outline

Math 537 －Ordinary Differential Equations

Lecture Notes－Method of Frobenius

Joseph M．Mahaffy， $\langle j m a h a f f y @ s d s u . e d u\rangle$

Department of Mathematics and Statistics Dynamical Systems Group
Computational Sciences Research Center
San Diego State University
San Diego，CA 92182－7720
http：／／jmahaffy．sdsu．edu
Fall 2019
5050
Joseph M．Mahaffy，〈jmahaffy＠sdsu．edu〉
（1／53）

Legendre＇s Equation
Cauchy－Euler Equation
Method of Frobenius
Definitions

Consider the $2^{\text {nd }}$ order linear differential equation：

$$
\begin{equation*}
P(x) y^{\prime \prime}+Q(x) y^{\prime}+R(x) y=F(x) . \tag{1}
\end{equation*}
$$

Definition（Ordinary and Singular Points）

x_{0} is an ordinary point of Eqn．（1）if $P\left(x_{0}\right) \neq 0$ and $Q(x) / P(x), R(x) / P(x)$ ，and $F(x) / P(x)$ are analytic at x_{0} ．
x_{0} is a singular point of Eqn．（1）if x_{0} is not an ordinary point．

The previous ODEs solved by power series methods have centered around $x_{0}=0$ ，when this is an ordinary point．
In an interval about a singular point，the solutions of Eqn．（1）can exhibit behavior different from power series solutions for Eqn．（1）near an ordinary point．
If $x_{0}=0$ ，then these solutions may behave like $\ln (x)$ or x^{-n} near x_{0} ．

Example：Consider Bessel＇s equation of order ν ：

$$
x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-\nu^{2}\right) y=0
$$

where $P(x)=x^{2}, Q(x)=x$ ，and $R(x)=x^{2}-\nu^{2}$ ．
It is clear that $x=0$ is a singular point．
We see that

$$
\lim _{x \rightarrow 0} x \frac{Q(x)}{P(x)}=1 \quad \text { and } \quad \lim _{x \rightarrow 0} x^{2} \frac{R(x)}{P(x)}=\lim _{x \rightarrow 0}\left(x^{2}-\nu^{2}\right)=-\nu^{2}
$$

which are both finite，so analytic．
It follows that $x_{0}=0$ is a regular singular point．
Any other value of x_{0} for Bessel＇s equation gives an ordinary point．

Example：Consider Legendre＇s equation：

$$
\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+\alpha(\alpha+1) y=0,
$$

where $P(x)=\left(1-x^{2}\right), Q(x)=-2 x$ ，and $R(x)=\alpha(\alpha+1)$ ．
It is clear that $x= \pm 1$ are singular points．
We see that

$$
\begin{gathered}
\lim _{x \rightarrow 1}(x-1) \frac{Q(x)}{P(x)}=\lim _{x \rightarrow 1}(x-1) \frac{-2 x}{\left(1-x^{2}\right)}=\lim _{x \rightarrow 1} \frac{2 x}{1+x}=1, \quad \text { and } \\
\lim _{x \rightarrow 1}(x-1)^{2} \frac{R(x)}{P(x)}=\lim _{x \rightarrow 1}(x-1)^{2} \frac{\alpha(\alpha+1)}{\left(1-x^{2}\right)}=\lim _{x \rightarrow 1}(x-1) \frac{-\alpha(\alpha+1)}{1+x}=0,
\end{gathered}
$$

which are both finite，so analytic．
It follows that $x_{0}=1$ is a regular singular point，and a similar argument shows that $x_{0}=-1$ is a regular singular point．

| Definitions
 Cauchy－Euler Equation
 Method of Frobenius |
| ---: | Legendre＇s Equation

Collecting coefficients gives：

$$
\sum_{n=0}^{\infty}\left[(n+2)(n+1) a_{n+2}-(n(n-1)+2 n-\alpha(\alpha+1)) a_{n}\right] x^{n}=0
$$

or

$$
\sum_{n=0}^{\infty}\left[(n+2)(n+1) a_{n+2}-(n(n+1)-\alpha(\alpha+1)) a_{n}\right] x^{n}=0
$$

The previous expression gives the recurrence relation：

$$
a_{n+2}=\frac{n(n+1)-\alpha(\alpha+1)}{(n+2)(n+1)} a_{n} \quad \text { for } \quad n=0,1, . .
$$

Properties of power series give a_{0} and a_{1} as arbitrary with $y(0)=a_{0}$ and $y^{\prime}(0)=a_{1}$ ．

Cauchy－Euler Equation（Also，Euler Equation）：Consider the differential equation：

$$
L[y]=t^{2} y^{\prime \prime}+\alpha t y^{\prime}+\beta y=0
$$

where α and β are constants．
Assume $t>0$ and attempt a solution of the form

$$
y(t)=t^{r}
$$

Note that t^{r} may not be defined for $t<0$ ．
The result is

$$
\begin{aligned}
L\left[t^{r}\right] & =t^{2}\left(r(r-1) t^{r-2}\right)+\alpha t\left(r t^{r-1}\right)+\beta t^{r} \\
& =t^{r}[r(r-1)+\alpha r+\beta]=0 .
\end{aligned}
$$

Thus，obtain quadratic equation

$$
F(r)=r(r-1)+\alpha r+\beta=0
$$

The recurrence relation shows that all the even coefficients，$a_{2 n}$ ，depend only on a_{0} ，while all odd coefficients，$a_{2 n+1}$ ，depend only on a_{1} ，so all solutions have the form：

$$
y(x)=a_{0} y_{1}(x)+a_{1} y_{2}(x)
$$

where $y_{1}(x)$ has only even powers of x and $y_{2}(x)$ has only odd powers of x ．
From the recurrence relation it is clear that any integer value of $\alpha=0,1,2, \ldots$ ． results in coefficients $a_{\alpha+2}=a_{\alpha+4}=\cdots=a_{\alpha+2 k}=0$ for $k=1,2, \ldots$
This results in one solution being an α－degree polynomial，which is valid for all x ．
The other solution remains an infinite series．
If α is not an integer，then both linearly independent solutions are infinite series．

The polynomial solution converges for all x ，while the infinite series solution converges for $|x|<1$ using the ratio test．

Complex Roots

Cauchy－Euler Equation
Method of Frobenius
Distinct Roots
Equal Roots
Complex Root
Cauchy－Euler Equation

Example：Consider the equation

$$
2 t^{2} y^{\prime \prime}+3 t y^{\prime}-y=0 .
$$

By substituting $y(t)=t^{r}$ ，we have

$$
t^{r}[2 r(r-1)+3 r-1]=t^{r}\left(2 r^{2}+r-1\right)=t^{r}(2 r-1)(r+1)=0 .
$$

This has the real roots $r_{1}=-1$ and $r_{2}=\frac{1}{2}$ ，giving the general solution

$$
y(t)=c_{1} t^{-1}+c_{2} \sqrt{t}, \quad t>0
$$

is

$$
y(t)=c_{1} t^{r_{1}}+c_{2} t^{r_{2}}, \quad t>0
$$

Equal Roots：If $F(r)=\left(r-r_{1}\right)^{2}=0$ has r_{1} as a double root，there is one solution，$y_{1}(t)=t^{r_{1}}$ ．

Need a second linearly independent solution．
Note that not only $F\left(r_{1}\right)=0$ ，but $F^{\prime}\left(r_{1}\right)=0$ ，so consider

$$
\begin{aligned}
\frac{\partial}{\partial r} L\left[t^{r}\right] & =\frac{\partial}{\partial r}\left[t^{r} F(r)\right]=\frac{\partial}{\partial r}\left[t^{r}\left(r-r_{1}\right)^{2}\right] \\
& =\left(r-r_{1}\right)^{2} t^{r} \ln (t)+2\left(r-r_{1}\right) t^{r}
\end{aligned}
$$

Also，

$$
\frac{\partial}{\partial r} L\left[t^{r}\right]=L\left[\frac{\partial}{\partial r}\left(t^{r}\right)\right]=L\left[t^{r} \ln (t)\right] .
$$

Evaluating these at $r=r_{1}$ gives

$$
L\left[t^{r_{1}} \ln (t)\right]=0
$$

Equal Roots：For $F(r)=\left(r-r_{1}\right)^{2}=0$ ，where r_{1} is a double root， then the differential equation

$$
L[y]=t^{2} y^{\prime \prime}+\alpha y^{\prime}+\beta y=0
$$

was shown to satisfy

$$
L\left[t^{r_{1}}\right]=0 \quad \text { and } \quad L\left[t^{r_{1}} \ln (t)\right]=0
$$

It follows that the general solution is

$$
y(t)=\left(c_{1}+c_{2} \ln (t)\right) t^{r_{1}} .
$$

Example：Consider the equation

$$
t^{2} y^{\prime \prime}+5 t y^{\prime}+4 y=0
$$

By substituting $y(t)=t^{r}$ ，we have

$$
t^{r}[r(r-1)+5 r+4]=t^{r}\left(r^{2}+4 r+4\right)=t^{r}(r+2)^{2}=0
$$

This only has the real root $r_{1}=-2$ ，which gives general solution

$$
y(t)=\left(c_{1}+c_{2} \ln (t)\right) t^{-2}, \quad t>0
$$

Complex Roots：Assume $F(r)=0$ has $r=\mu \pm i \nu$ as complex roots， the solutions are still $y(t)=t^{r}$ ．

However，

$$
t^{r}=e^{(\mu+i \nu) \ln (t)}=t^{\mu}[\cos (\nu \ln (t))+i \sin (\nu \ln (t))]
$$

As before，we obtain the two linearly independent solutions by taking the real and imaginary parts，so the general solution is

$$
y(t)=t^{\mu}\left[c_{1} \cos (\nu \ln (t))+c_{2} \sin (\nu \ln (t))\right] .
$$

Regular Singular Point：Consider the equation

Example：Consider the equation

$$
t^{2} y^{\prime \prime}+t y^{\prime}+y=0
$$

By substituting $y(t)=t^{r}$ ，we have

$$
t^{r}[r(r-1)+r+1]=t^{r}\left(r^{2}+1\right)=0 .
$$

This has the complex roots $r= \pm i(\mu=0$ and $\nu=1)$ ，which gives the general solution

$$
y(t)=c_{1} \cos (\ln (t))+c_{2} \sin (\ln (t)), \quad t>0 .
$$

$$
P(x) y^{\prime \prime}+Q(x) y^{\prime}+R(x) y=0,
$$

and without loss of generality assume that it has a regular singular point at $x_{0}=0$ ．

This implies that $x Q(x) / P(x)=p(x)$ and $x^{2} R(x) / P(x)=q(x)$ are analytic at $x=0$ ，so

$$
p(x)=\sum_{n=0}^{\infty} p_{n} x^{n} \quad \text { and } \quad q(x)=\sum_{n=0}^{\infty} q_{n} x^{n}
$$

are convergent series for some interval $|x|<\rho$ with $\rho>0$ ．
This gives the equation：

$$
L[y]=x^{2} y^{\prime \prime}+x p(x) y^{\prime}+q(x) y=0 .
$$

istinct Roots， Repeated Roots

Repeated Roots，$r_{1}=r_{2}=r$
Roots Differing by an Integer，$r_{1}-r_{2}=N$ Method of Frobenius

Method of Frobenius

Method of Frobenius：Since the regular singular problem starts with the zeroth order terms in the coefficients being similar to the Cauchy－Euler equation，this suggests looking for solutions with terms of x^{r} ．

As with the Cauchy－Euler equation，we consider $x>0$ with the case $x<0$ handled by a change of variables $x=-\xi$ with $\xi>0$ ．

The Method of Frobenius seeks solutions of the form：

$$
y(x)=x^{r}\left(a_{0}+a_{1} x+\cdots+a_{n} x^{n}+\ldots\right)=x^{r} \sum_{n=0}^{\infty} a_{n} x^{n}=\sum_{n=0}^{\infty} a_{n} x^{r+n} .
$$

1
(2)
8What values of r give a solution to（3）in the above form？

What is the radius of convergence for the above series？
\square
Cauchy－Euler Equation
Method of Frobenius
Distinct Roots，
Repeated Roots，
Roots Differing by an Integer，$r_{1}-r_{2}=N$
Joseph M．Mahaffy，〈jmahaffy＠sdsu．edu
（18）
then the second order linear equation becomes the Cauchy－Euler equation：

Regular Singular Problem：Since the $p(x)$ and $q(x)$ are analytic at $x=0$ ，the second order linear equation can be written：

$$
\begin{equation*}
L[y]=x^{2} y^{\prime \prime}+x\left(\sum_{n=0}^{\infty} p_{n} x^{n}\right) y^{\prime}+\left(\sum_{n=0}^{\infty} q_{n} x^{n}\right) y=0 . \tag{3}
\end{equation*}
$$

Note that if $p_{n}=q_{n}=0$ for $n=1,2, \ldots$ with

$$
p_{0}=\lim _{x \rightarrow 0} \frac{x Q(x)}{P(x)} \quad \text { and } \quad q_{0}=\lim _{x \rightarrow 0} \frac{x^{2} R(x)}{P(x)}
$$

$$
x^{2} y^{\prime \prime}+x p_{0} y^{\prime}+q_{0} y=0
$$

For the regular singular problem

$$
x^{2} y^{\prime \prime}+x\left(\sum_{n=0}^{\infty} p_{n} x^{n}\right) y^{\prime}+\left(\sum_{n=0}^{\infty} q_{n} x^{n}\right) y=0
$$

we seek a solutions of the form：$y(x)=\sum_{n=0}^{\infty} a_{n} x^{r+n}$ ，so

$$
y^{\prime}=\sum_{n=0}^{\infty} a_{n}(r+n) x^{r+n-1} \quad \text { and } \quad y^{\prime \prime}=\sum_{n=0}^{\infty} a_{n}(r+n)(r+n-1) x^{r+n-2}
$$

Thus，

$$
\begin{aligned}
\sum_{n=0}^{\infty} a_{n}(r+n)(r+n-1) x^{r+n} & +\left(\sum_{n=0}^{\infty} p_{n} x^{n}\right) \sum_{n=0}^{\infty} a_{n}(r+n) x^{r+n} \\
& +\left(\sum_{n=0}^{\infty} q_{n} x^{n}\right) \sum_{n=0}^{\infty} a_{n} x^{r+n}=0
\end{aligned}
$$

```
Distinct Roots, r
```

Indicial Equation：In the previous equation，we examine the lowest power of x ，so $n=0$ ．

This gives

$$
a_{0} x^{r}\left(r(r-1)+p_{0} r+q_{0}\right)=0 .
$$

For $a_{0} \neq 0$ ，we obtain the indicial equation，which came from solving the Cauchy－Euler equation：

$$
F(r)=r(r-1)+p_{0} r+q_{0}=0,
$$

which is a quadratic equation．
The form of the solution of the Cauchy－Euler equation depended on the values of r for the indicial equation，which in turn affects the factor x^{r} multiplying our power series solution．

```
Cauchy-Euler Equation
    Method of Frobenius
Distinct Roots, r}\mp@subsup{r}{1}{}-\mp@subsup{r}{2}{}\not=
Repeated Roots, r
Roots Differing by an Integer, r}\mp@subsup{r}{1}{}-\mp@subsup{r}{2}{}=
Distinct Roots, r}\mp@subsup{r}{1}{}-\mp@subsup{r}{2}{}\not= Method of Frobenius
Roots Differing by an Integer，\(r_{1}-r_{2}=N\)
Distinct Roots，\(r_{1}-r_{2} \neq N\)
```

Example：Consider the regular singular problem given by

$$
4 x y^{\prime \prime}+2 y^{\prime}+y=0
$$

where $x=0$ is a regular singular point．
From our definitions before we have $p(x)=\frac{1}{2}$ and $q(x)=\frac{x}{4}$ ，which implies that $p_{0}=\frac{1}{2}$ and $q_{0}=0$ ．
Since p and q have convergent power series for all x ，the solutions will converge for $|x|<\infty$ ．
The indicial equation is given by：

$$
r(r-1)+\frac{1}{2} r=r\left(r-\frac{1}{2}\right)=0,
$$

so $r_{1}=0$ and $r_{2}=\frac{1}{2}$ ．
with these solutions converging for at least $|x|<\rho$ ，where ρ is the radius of convergence for $p(x)$ and $q(x)$ ．
For this case，a basis for the solution of the regular singular problem satisfies：

$$
y_{1}(x)=x^{r_{1}}\left(a_{0}+a_{1} x+\cdots+a_{n} x^{n}+\ldots\right)=x^{r_{1}} \sum_{n=0}^{\infty} a_{n} x^{n}
$$

and

$$
y_{2}(x)=x^{r_{2}}\left(b_{0}+b_{1} x+\cdots+b_{n} x^{n}+\ldots\right)=x^{r_{2}} \sum_{n=0}^{\infty} b_{n} x^{n}
$$

Joseph M．Mahaffy，〈jmahaffy＠sdsu．edu〉（22／53）

Example：For $n \geq 1$ ，we match powers of x ，so

$$
[4(r+n)(r+n-1)+2(r+n)] a_{n}+a_{n-1}=0
$$

From this we obtain the recurrence relation：

$$
a_{n+1}=\frac{-a_{n}}{(2 n+2 r+2)(2 n+2 r+1)}, \quad \text { for } \quad n=0,1, \ldots
$$

First Solution：Let $r=r_{1}=0$ ，then the recurrence relation becomes：

$$
a_{n+1}=\frac{-a_{n}}{(2 n+2)(2 n+1)}, \quad \text { for } \quad n=0,1, \ldots,
$$

shifting the last index to match powers of x ．
Note that when $n=0$ ，we have

$$
a_{0}[4 r(r-1)+2 r]=2 a_{0} r(2 r-1)=0,
$$

which is an alternate way to obtain the indicial equation．

Distinct Roots，$r_{1}-r_{2} \neq N$

Example：The series we see as solutions to this problem have similarities with series for cosine and sine

Specifically，a change of variables gives：

$$
y_{1}(x)=a_{0} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!} x^{n}=a_{0} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!}\left(x^{\frac{1}{2}}\right)^{2 n}=a_{0} \cos (\sqrt{x})
$$

Similarly，the second linearly independent solution satisfies：

$$
y_{2}(x)=b_{0} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!} x^{n+\frac{1}{2}}=b_{0} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!}\left(x^{\frac{1}{2}}\right)^{2 n+1}=b_{0} \sin (\sqrt{x})
$$

Thus，we could write the general solution as

$$
y(x)=a_{0} \cos (\sqrt{x})+b_{0} \sin (\sqrt{x})
$$

which can readily be shown satisfies the $\boldsymbol{O D E}$ in this example：

$$
y_{2}(x)=b_{0} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!} x^{n+\frac{1}{2}}
$$

$$
4 x^{2} y^{\prime \prime}+2 x y^{\prime}+x y=0
$$

The form of the second solution is found in a manner similar to solving the Cauchy－Euler equation．

The first solution is found as before with：

$$
y_{1}(x)=\phi(r, x)=x^{r} \sum_{n=0}^{\infty} a_{n}(r) x^{n}
$$

where the coefficients $a_{n}(r)$ are determined by a recurrence relation with the values of r found from the indicial equation

$$
F(r)=r(r-1)+p_{0} r+q_{0}=0 .
$$

Our regular singular problem was $L[y]=x^{2} y^{\prime \prime}+x p(x) y^{\prime}+q(x) y=0$ ，which with our first solution and the power series for $p(x)$ and $q(x)$ gives

$$
L[\phi](r, x)=x^{r} a_{0} F(r)+\sum_{n=1}^{\infty}\left[a_{n} F(r+n)+\sum_{k=0}^{n-1} a_{k}\left[(r+k) p_{n-k}+q_{n-k}\right]\right] x^{r+n}=0,
$$

where the second sum comes from multiplying the infinite series and collecting terms．

Joseph M．Mahaffy，〈jmahaffy＠sdsu．edu〉
$(30 / 53)$

Definitions Cauchy－Euler Equation Method of Frobenius	Distinct Roots，$r_{1}-r_{2} \neq N$ Repeated Roots，$r_{1}=r_{2}=r$ Roots Differing by an Integer，$r_{1}-r_{2}=N$
Repeated Roots，$r_{1}=r_{2}=r$	

Since $\frac{\partial \phi}{\partial r}\left(r_{1}, x\right)$ is a solution and our first solution is：

$$
y_{1}(x)=\phi\left(r_{1}, x\right)=x^{r_{1}} \sum_{n=0}^{\infty} a_{n}\left(r_{1}\right) x^{n}
$$

we obtain the second solution

$$
\begin{aligned}
y_{2}(x)=\left.\frac{\partial \phi(r, x)}{\partial r}\right|_{r=r_{1}} & =\left.\frac{\partial}{\partial r}\left[x^{r} \sum_{n=0}^{\infty} a_{n}(r) x^{n}\right]\right|_{r=r_{1}} \\
& =\left(x^{r_{1}} \ln (x)\right) \sum_{n=0}^{\infty} a_{n}\left(r_{1}\right) x^{n}+x^{r_{1}} \sum_{n=1}^{\infty} a_{n}^{\prime}\left(r_{1}\right) x^{n} \\
& =y_{1}(x) \ln (x)+x^{r_{1}} \sum_{n=1}^{\infty} a_{n}^{\prime}\left(r_{1}\right) x^{n}, \quad x>0
\end{aligned}
$$

Significantly，we have

$$
L\left[\frac{\partial \phi}{\partial r}\right]\left(r_{1}, x\right)=\left.a_{0} \frac{\partial}{\partial r}\left[x^{r}\left(r-r_{1}\right)^{2}\right]\right|_{r=r_{1}}=\left.a_{0}\left[\left(r-r_{1}\right)^{2} x^{r} \ln (x)+2\left(r-r_{1}\right) x^{r}\right]\right|_{r=r_{1}}=0,
$$

so $\frac{\partial \phi}{\partial r}\left(r_{1}, x\right)$ is also a solution to our problem．

$$
a_{n}(r)=-\frac{\sum_{k=0}^{n-1} a_{k}\left[(r+k) p_{n-k}+q_{n-k}\right]}{F(r+n)}, \quad n \geq 1
$$

With Bessel＇s equation order zero，
Bessel＇s Equation Order Zero satisfies：

$$
x^{2} y^{\prime \prime}+x y^{\prime}+x^{2} y=0
$$

where $x=0$ is a regular singular point．
From our definitions before we have $p(x)=1$ and $q(x)=x^{2}$ ，which implies that $p_{0}=1$ and $q_{0}=0$ ．

Since p and q have convergent power series for all x ，the solutions will converge for $|x|<\infty$ ．
The indicial equation is given by：

$$
r(r-1)+r=r^{2}=0
$$

so $r_{1}=r_{2}=0$ ，repeated root ．

Distinct Roots，$r_{1}-r_{2} \neq N$
Repeated Roots，$r_{1}=r_{2}=r$
Roots Differing by an Integer，$r_{1}-r_{2}=N$

$$
x^{2} y^{\prime \prime}+x y^{\prime}+x^{2} y=0,
$$

we try a solution of the form：$y=\sum_{n=0}^{\infty} a_{n} x^{n+r}$ ．
Differentiating y and entering into the equation gives：

$$
\sum_{n=0}^{\infty} a_{n}(n+r)(n+r-1) x^{n+r}+\sum_{n=0}^{\infty} a_{n}(n+r) x^{n+r}+\sum_{n=2}^{\infty} a_{n-2} x^{n+r}=0
$$

shifting the last index to match powers of x ．
From the same powers of $x,(n+r)^{2} a_{n}+a_{n-2}=0$ ，which for $r=0$ gives the recurrence relation：

$$
a_{n}=\frac{-a_{n-2}}{n^{2}}, \quad \text { for } \quad n=2,3,4, \ldots
$$

with a_{0} arbitrary and $a_{1}=0$.

Definitions Cauchy－Euler Equation Method of Frobenius	Distinct Roots，$r_{1}-r_{2} \neq N$ Repeated Roots，$r_{1}=r_{2}=r$ Roots Differing by an Integer，$r_{1}-r_{2}=N$
Bessel＇s Equation Order Zero	

This first solution gives the Bessel function of the first kind of order zero， $J_{0}(x)$ ．Below shows some polynomial approximations from the partial sums of the series solution．

Since the Bessel＇s equation order zero has only the repeated root $r=0$ from the indicial equation，the second solution has the form：

$$
y_{2}(x)=y_{1}(x) \ln (x)+x^{r} \sum_{n=1}^{\infty} b_{n} x^{n}=\ln (x) J_{0}(x)+\sum_{n=1}^{\infty} b_{n} x^{n} .
$$

One technique to solve for this second solution is to substitute into Bessel＇s equation and solve for the coefficients，b_{n}
Alternately，we use our results in deriving this form of the second solution，where we found that the coefficients satisfied：

$$
b_{n}=a_{n}^{\prime}(r), \quad \text { where } \quad a_{n}(r)=-\frac{a_{n-2}(r)}{(n+r)^{2}}
$$

evaluated at $r=0$ based on the recurrence relation for coefficients of the first solution．

Depeated Roots，

oots Differing，$r_{1}=r_{2}=r$
Method of Frobenius
Roots Differing by an Integer，$r_{1}-r_{2}=N$

From the formula deriving the recurrence relation，we find $(r+1)^{2} a_{1}(r)=0$ ，so not only $a_{1}(0)=0$ ，but $a_{1}^{\prime}(0)=0$
It follows from the recurrence relation that

$$
a_{3}^{\prime}(0)=a_{5}^{\prime}(0)=\cdots=a_{2 k+1}^{\prime}(0)=\cdots=0
$$

The recurrence relation gives：

$$
a_{2 m}(r)=-\frac{a_{2 m-2}(r)}{(2 m+r)^{2}}, \quad m=1,2,3, \ldots
$$

Hence，

$$
\begin{gathered}
a_{2}(r)=-\frac{a_{0}}{(2+r)^{2}}, \\
a_{4}(r)=-\frac{a_{2}(r)}{(4+r)^{2}}=\frac{a_{0}}{(4+r)^{2}(2+r)^{2}}, \\
a_{6}(r)=-\frac{a_{4}(r)}{(6+r)^{2}}=\frac{a_{0}}{(6+r)^{2}(4+r)^{2}(2+r)^{2}}, \\
a_{2 m}(r)=\frac{(-1)^{m} a_{0}}{(2 m+r)^{2}(2 m-2+r)^{2} \cdots(4+r)^{2}(2+r)^{2}}, \quad m=1,2,3, \ldots
\end{gathered}
$$

| Definitions
 Cauchy－Euler Equation
 Method of Frobenius |
| :--- | | Distinct Roots，$r_{1}-r_{2} \neq N$
 Repeated Roots，$r_{1}=r_{2}=r$
 Roots Differing by an Integer，$r_{1}-r_{2}=N$ |
| :--- |
| Bessel＇s Equation Order Zero |

Define

$$
H_{m}=\frac{1}{m}+\frac{1}{m-1}+\cdots+\frac{1}{2}+1
$$

then using this with the recurrence relation

$$
a_{2 m}^{\prime}(0)=-H_{m} \frac{(-1)^{m} a_{0}}{2^{2 m}(m!)^{2}}, \quad m=1,2,3, \ldots
$$

It follows that the second solution of Bessel＇s equation order zero（with $a_{0}=1$ ） satisfies：

$$
y_{2}(x)=J_{0}(x) \ln (x)+\sum_{m=1}^{\infty} \frac{(-1)^{m+1} H_{m}}{2^{2 m}(m!)^{2}} x^{2 m}, \quad x>0
$$

Usually the second solution is taken to be the Bessel function of the second kind of order zero，which is defined as

$$
Y_{0}(x)=\frac{2}{\pi}\left[y_{2}(x)+(\gamma-\ln (2)) J_{0}(x)\right]
$$

where γ is the Euler－Máscheroni constant

$$
\gamma=\lim _{n \rightarrow \infty}\left(H_{n}-\ln (n)\right) \approx 0.5772
$$

The standard solutions for Bessel＇s equation are the Bessel function of the first kind of order zero，$J_{0}(x)$ and Bessel function of the second kind of order zero，$Y_{0}(x)$ ．

50
Joseph M．Mahaffy，〈jmahaffy＠sdsu．edu〉（41／53）

Definitions Cauchy－Euler Equation Method of Frobenius

Distinct Roots，
Repeated Roots，
Roots Differing by an Integer，$r_{1}-r_{2}=N$
Roots Differing by an Integer，$r_{1}-r_{2}=N$
Case 3．Roots Differing by an Integer，$r_{1}-r_{2}=N$ ，where N is a positive integer．

This case is more complicated with the coefficients in the second solution satisfying：

$$
b_{n}\left(r_{2}\right)=\frac{d}{d r}\left[\left.\left(r-r_{2}\right) a_{n}(r)\right|_{r=r_{2}}, \quad n=0,1,2, \ldots\right.
$$

with $a_{0}=r-r_{2}$ and

$$
k=\lim _{r \rightarrow r_{2}}\left(r-r_{2}\right) a_{N}(r) .
$$

In practice the best way to determine if $k=0$ is to compute $a_{n}\left(r_{2}\right)$ and see if one finds $a_{N}\left(r_{2}\right)$ ．
If this is possible，then the second solution is readily found without the logarithmic term；otherwise，the logarithmic term must be included．

Example：The series above could be rearranged in the following form：

$$
\sum_{n=0}^{\infty} a_{n}(n+r)(n+r+2) x^{n+r}=-4 \sum_{n=4}^{\infty} a_{n-4} x^{n+r}
$$

With $r_{1}=0$ ，we obtain the recurrence relations：
$a_{1}\left(r_{1}+1\right)\left(r_{1}+3\right)=3 a_{1}=0, \quad a_{2}\left(r_{1}+2\right)\left(r_{1}+4\right)=8 a_{2}=0, \quad a_{3}\left(r_{1}+3\right)\left(r_{1}+5\right)=15 a_{3}=0$,
$a_{1}=a_{2}=a_{3}=0$, and

$$
a_{n}(r)=-\frac{4}{(n+r)(n+r+2)} a_{n-4}(r) \quad \text { or } \quad a_{n}=-\frac{4}{n(n+2)} a_{n-4}
$$

It follows that

$$
a_{4}=-\frac{4}{6 \cdot 4} a_{0}=-\frac{a_{0}}{3 \cdot 2}, \quad a_{8}=-\frac{4}{10 \cdot 8} a_{4}=\frac{a_{0}}{5!}, \quad a_{12}=-\frac{4}{14 \cdot 12} a_{8}=-\frac{a_{0}}{7!}
$$

and $a_{1}=a_{5}=\ldots=a_{4 n+1}=0, a_{2}=a_{6}=\ldots=a_{4 n+2}=0$ ，and
$a_{3}=a_{7}=\ldots=a_{4 n+3}=0$ ．

Example：Roots，$r_{1}-r_{2}=N$
Example：Following the same process as finding $y_{1}(x)$ ，we have：

$$
\sum_{n=0}^{\infty} b_{n}\left(n+r_{2}\right)\left(n+r_{2}+2\right) x^{n+r_{2}}=-4 \sum_{n=4}^{\infty} b_{n-4} x^{n+r_{2}}
$$

With $r_{2}=-2$ ，we obtain the recurrence relations：
$b_{1}\left(r_{2}+1\right)\left(r_{2}+3\right)=-b_{1}=0, \quad b_{2}\left(r_{2}+2\right)\left(r_{2}+4\right)=0 b_{2}=0, \quad b_{3}\left(r_{2}+3\right)\left(r_{2}+5\right)=3 b_{3}=0$,
$b_{1}=b_{3}=0\left(b_{2}\right.$ is arbitrary and generates y_{1} ，so take $\left.b_{2}=0\right)$ ，and

$$
b_{n}(r)=-\frac{4}{(n+r)(n+r+2)} b_{n-4}(r) \quad \text { or } \quad b_{n}=-\frac{4}{n(n-2)} b_{n-4}
$$

It follows that

$$
b_{4}=-\frac{4}{4 \cdot 2} b_{0}=-\frac{b_{0}}{2 \cdot 1}, \quad b_{8}=-\frac{4}{8 \cdot 6} b_{4}=\frac{b_{0}}{4!}, \quad b_{12}=-\frac{4}{12 \cdot 10} b_{8}=-\frac{b_{0}}{6!}
$$

and $b_{1}=b_{5}=\ldots=b_{4 n+1}=0, b_{2}=b_{6}=\ldots=b_{4 n+2}=0$ ，and
$b_{3}=b_{7}=\ldots=b_{4 n+3}=0$ ．

Example：The results above are combined to give the $1^{\text {st }}$ solution：

$$
y_{1}(x)=a_{0} \sum_{m=0}^{\infty} \frac{(-1)^{m}}{(2 m+1)!} x^{4 m}
$$

To find the $2^{\text {nd }}$ solution we need to know if the logarithmic term needs to be included．
This term is unnecessary if

$$
\lim _{r \rightarrow r_{2}} a_{N}(r) \quad \text { exists. }
$$

For this example，$r_{2}=-2$ and $N=2$ ，so we examine

$$
\lim _{r \rightarrow-2} a_{2}(r)=\frac{0}{(r+2)(r+4)}=0
$$

which implies the second series may be computed directly with no logarithmic term．
Thus，we try a solution of the form：

$$
y_{2}(x)=\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}
$$

Joseph M．Mahaffy，〈jmahaffy＠sdsu．edu〉（46／53）
\qquad

Example：Roots，$r_{1}-r_{2}=N$

Example：These results are combined to give the $2^{\text {nd }}$ solution：

$$
y_{2}(x)=b_{0} x^{-2} \sum_{m=0}^{\infty} \frac{(-1)^{m}}{(2 m)!} x^{4 m}
$$

It follows that our general solution for this example is：

$$
y(x)=a_{0} \sum_{m=0}^{\infty} \frac{(-1)^{m}}{(2 m+1)!} x^{4 m}+b_{0} x^{-2} \sum_{m=0}^{\infty} \frac{(-1)^{m}}{(2 m)!} x^{4 m}
$$

This could be rewritten

$$
\begin{aligned}
y(x) & =a_{0} x^{-2} \sum_{m=0}^{\infty} \frac{(-1)^{m}}{(2 m+1)!}\left(x^{2}\right)^{2 m+1}+b_{0} x^{-2} \sum_{m=0}^{\infty} \frac{(-1)^{m}}{(2 m)!}\left(x^{2}\right)^{2 m} \\
& =x^{-2}\left(a_{0} \sin \left(x^{2}\right)+b_{0} \cos \left(x^{2}\right)\right)
\end{aligned}
$$

Example 2：Consider the ODE：

$$
x^{2} y^{\prime \prime}-x y=0
$$

where $x=0$ is a regular singular point．
Try a solution of the form：$y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+r}$ ．
Differentiating y and entering into the equation gives：

$$
\sum_{n=0}^{\infty} a_{n}(n+r)(n+r-1) x^{n+r}-\sum_{n=1}^{\infty} a_{n-1} x^{n+r}=0
$$

shifting the last index to match powers of x ．
Examining this equation with $n=0$ gives the indicial equation：

$$
F(r)=r(r-1)=0
$$

which has the roots $r_{1}=1$ and $r_{2}=0\left(r_{1}-r_{2}=1\right)$ ．

With $r_{1}=1$ ，we obtain the recurrence relation：

$$
a_{n}(r)=\frac{1}{(n+r)(n+r-1)} a_{n-1}(r) \quad \text { or } \quad a_{n}=\frac{1}{n(n+1)} a_{n-1}, \quad n=1,2,3, \ldots
$$

It follows that

$$
\begin{gathered}
a_{1}=\frac{1}{1 \cdot 2} a_{0}, \quad a_{2}=\frac{1}{2 \cdot 3} a_{1}=\frac{a_{0}}{2!3!}, \quad a_{3}=\frac{1}{3 \cdot 4} a_{2}=\frac{a_{0}}{3!4!} \\
a_{n}=\frac{a_{0}}{n!(n+1)!}, \quad n=1,2,3, \ldots
\end{gathered}
$$

Example 2：Roots，$r_{1}-r_{2}=N$
Example 2：Insert $y_{2}(x)=k y_{1}(x) \ln (x)+\sum_{n=0}^{\infty} b_{n} x^{n}$ into the $\boldsymbol{O D E}$ ，so

$$
\begin{aligned}
& x^{2}\left[k y_{1}^{\prime \prime} \ln (x)+2 k y_{1}^{\prime} \frac{1}{x}-k y_{1} \frac{1}{x^{2}}+\sum_{n=2}^{\infty} n(n-1) b_{n} x^{n-2}\right] \\
&-k x y_{1} \ln (x)-\sum_{n=0}^{\infty} b_{n} x^{n+1}=0
\end{aligned}
$$

Because $y_{1}(x)$ is a solution of the $\boldsymbol{O D E}, k \ln (x)\left[x^{2} y_{1}^{\prime \prime}-x y_{1}\right]=0$ ，which reduces this expression to

$$
2 k x y_{1}^{\prime}-k y_{1}+\sum_{n=2}^{\infty} n(n-1) b_{n} x^{n}-\sum_{n=0}^{\infty} b_{n} x^{n+1}=0
$$

Using the series solution for $y_{1}(x)$ with $a_{0}=1$ and shifting indices，we obtain

$$
\sum_{n=0}^{\infty}\left(\frac{2 k}{(n!)^{2}}-\frac{k}{n!(n+1)!}\right) x^{n+1}+\sum_{n=1}^{\infty} b_{n+1}(n+1) n x^{n+1}-\sum_{n=0}^{\infty} b_{n} x^{n+1}=0 .
$$

Example 2: From the series above our recurrence relation gives:

$$
k-b_{0}=0, \quad \text { or } \quad k=b_{0}
$$

and

$$
\frac{2 k}{(n!)^{2}}-\frac{k}{n!(n+1)!}+n(n+1) b_{n+1}-b_{n}=0, \quad n=1,2,3, \ldots
$$

Equivalently,

$$
b_{n+1}=\frac{1}{n(n+1)}\left[b_{n}-\frac{(2 n+1) k}{n!(n+1)!}\right], \quad n=1,2,3, \ldots
$$

For convenience we take $a_{0}=1$ and $b_{0}=k=1$.
The constant b_{1} is still arbitrary (as it would generate $y_{1}(x)$ again), so we select $b_{1}=0$ and find a particular $2^{\text {nd }}$ solution using the recurrence relation:

$$
y_{2}(x)=y_{1}(x) \ln (x)+1-\frac{3}{4} x^{2}-\frac{7}{36} x^{3}-\frac{35}{1728} x^{4}-\ldots
$$

