Math 541 －Numerical Analysis

Population Growth and
Planets Examples

Joseph M．Mahaffy，〈jmahaffy＠mail．sdsu．edu〉

Department of Mathematics and Statistics Dynamical Systems Group
Computational Sciences Research Center
San Diego State University
San Diego，CA 92182－7720
http：／／jmahaffy．sdsu．edu
Spring 2018
5050

Growth of Yeast：To find the growth rate of the yeast，we convert the discrete data into derivatives from the population data．

The easiest method is the two point central difference $\left(\mathcal{O}\left(h^{2}\right)\right)$ ．
For data p_{i} at time t_{i} ，we approximate the derivative at the midpoint between two successive times：

$$
g\left(s_{i}\right)=p^{\prime}\left(s_{i}\right) \approx \frac{p\left(t_{i+1}\right)-p\left(t_{i}\right)}{t_{i+1}-t_{i}}, \quad \text { where } \quad s_{i}=\frac{t_{i+1}+t_{i}}{2}
$$

```
function [t2d,g2pd] = der2pt(td,pd)
%Computes central difference between 2 pts
N = length(td);
for i=1:N-1
    t2d(i) = (td(i)+td(i+1))/2;
    g2pd(i) = (pd(i+1)-pd(i))/(td(i+1)-td(i));
end
end
```

Yeast Population：Suppose that a yeast population is given by the following table．

$t(\mathrm{hr})$	p	$t(\mathrm{hr})$	p	$t(\mathrm{hr})$	p
0	0.95	7	8.1	14	26.1
1	1.4	8	10.1	15	28.1
2	1.9	9	12.6	16	29.8
3	2.5	10	15.5	17	31.1
4	3.4	11	18.4	18	32.1
5	4.6	12	21.2	19	32.9
6	6.2	13	23.9	20	33.4

We combine a number of numerical methods to approximate when this population is growing most rapidly．

Growth of Yeast：The program converts the population data into growth data．

$t(\mathrm{hr})$	$g(t)$	$t(\mathrm{hr})$	$g(t)$	$t(\mathrm{hr})$	$g(t)$
0.5	0.45	7.5	2	14.5	2
1.5	0.5	8.5	2.5	15.5	1.7
2.5	0.6	9.5	2.9	16.5	1.3
3.5	0.9	10.5	2.9	17.5	1
4.5	1.2	11.5	2.8	18.5	0.8
5.5	1.6	12.5	2.7	19.5	0.5
6.5	1.9	13.5	2.2		

We use our least squares techniques to fit polynomials through these approximations，and the polynomials are easily differentiated to find the maximum growth rate．

Two point central difference approximations to the derivative are fit with polynomials for with the least squares techniques．

Quadratic fit with $S S E=1.4893$ ，

$$
g(t)=-0.02636 t^{2}+0.5519 t-0.3839 .
$$

Cubic fit with $S S E=1.2431$ ，

$$
g(t)=-0.0007469 t^{3}-0.003951 t^{2}+0.3724 t-0.08254 .
$$

Quartic fit with SSE $=0.2038$ ，

$$
g(t)=0.0003108 t^{4}-0.01318 t^{3}+0.1562 t^{2}-0.3438 t-0.6501 .
$$

$5^{\text {th }}$－Order fit with $S S E=0.1957$ ，
$g(t)=0.000005636 t^{5}+0.00002903 t^{4}-0.008159 t^{3}+0.1183 t^{2}-0.2337 t+0.5727$.
$6^{t h}$－Order fit with $S S E=0.1422$ ，
$g(t)=-3.029 \times 10^{-6} t^{6}+1.874 \times 10^{-4} t^{5}-0.004112 t^{4}+0.03632 t^{3}-0.1076 t^{2}+0.2345 t+0.3257$.

Population Growth
Growth of Yeast
Growth of Yeast：We developed higher order differentiation techniques，including the best three point differences for approximating the derivative $\left(\mathcal{O}\left(h^{3}\right)\right.$ ）through the yeast data：

```
function g3pd = der3pt(td,pd)
%Computes best 3 pt derivative for evenly spaced ...
    time data
N = length(pd);
h = td(2)-td(1);
for i=1:N
        if (i==1)
            g3pd(1) = 1/(2*h)*(-3*pd(1) +4*pd(2) -pd(3));
        elseif (i==N)
            g3pd(N) = ...
                1/(2*h)*(pd (N-2) -4*pd (N-1) +3*pd (N));
        else
            g3pd(i) = 1/(2*h)*(-pd(i-1) +pd(i+1));
        end
end
```

oseph M. Mahaffy, 〈jmahaffy@mail.sdsu.edu〉

Population Growth
Growth of Yeast

Growth of Yeast：The program converts the population data into growth data using the best three point derivative approximations．

$t(\mathrm{hr})$	$g(p)$	$t(\mathrm{hr})$	$g(p)$	$t(\mathrm{hr})$	$g(p)$
0	0.425	7	1.95	14	2.1
1	0.475	8	2.25	15	1.85
2	0.55	9	2.7	16	1.5
3	0.75	10	2.9	17	1.15
4	1.05	11	2.85	18	0.9
5	1.4	12	2.75	19	0.65
6	1.75	13	2.45	20	0.35

Again our least squares techniques fit polynomials through these approximations，and the polynomials are easily differentiated to find the maximum growth rate．

Best three point difference approximations to the derivative are fit with polynomials for with the least squares techniques．

Quadratic fit with $S S E=1.7112$ ，

$$
g(t)=-0.02436 t^{2}+0.5073 t-0.1837
$$

Cubic fit with $S S E=1.3826$ ，

$$
g(t)=-0.0007263 t^{3}-0.002572 t^{2}+0.3372 t+0.06466
$$

Quartic fit with $S S E=0.1680$ ，

$$
g(t)=0.0002688 t^{4}-0.01148 t^{3}+0.1336 t^{2}-0.2350 t+0.5112
$$

$5^{\text {th }}$－Order fit with $S S E=0.1614$ ，
$g(t)=0.000003878 t^{5}+0.00007488 t^{4}-0.008067 t^{3}+0.1088 t^{2}-0.1705 t+0.4825$.
$6^{\text {th }}$－Order fit with $S S E=0.07863$ ，
$g(t)=-2.712 \times 10^{-6} t^{6}+1.666 \times 10^{-4} t^{5}-0.003595 t^{4}+0.03024 t^{3}-0.07332 t^{2}+0.1488 t+0.4006$.

Population Growth
Growth of Yeast－Polynomial Fit

BIC and AIC：We apply the Bayesian and Akaike Information Criteria to the polynomial fits to the growth calculations using the 2 point and 3 point derivative formula．
The polynomial of order n has $k=n+1$ parameters．The Table below shows the sum of square errors，the information criteria for all the fits made．

k	SSE2	BIC2	AIC2	SSE3	BIC3	AIC3
3	1.489	-42.961	10.809	1.711	-48.120	12.942
4	1.243	-43.579	9.195	1.383	-53.348	10.463
5	0.204	-76.750	-24.971	0.168	-100.771	-31.796
6	0.196	-74.564	-23.781	0.161	-101.643	-30.643
7	0.142	-77.959	-28.172	0.0786	-116.904	-43.742

This Table suggests that the $6^{\text {th }}$ order polynomial with the best fitting 3 point derivative formula gives the best estimate of the growth rate，which is consistent with the studies performed．

Population Growth Planets Example

Allometric Model

We seek an Allometric model of the form：

$$
p=k d^{a} .
$$

By taking logarithms，we have：

$$
\ln (p)=\ln (k)+a \ln (d)
$$

which is linear in the logarithms of the data．
Below is the Table of the logarithms of the data．

Planet	$\ln (d)$	$\ln (p)$
Mercury	4.058717	4.476882
Earth	5.007965	5.900582
Jupiter	6.657112	8.374938
Neptune	8.411166	11.005428

5050

This problem examines Kepler＇s Third Law．
We use the power law to determine the period of orbit about the sun for all planets given information about some of the planets．

Let d be the mean distance $\times 10^{6} \mathrm{~km}$ from the sun and p be the period of orbit in（Earth）days about the sun．

Planet	Distance d	Period p
Mercury	57.9	87.96
Earth	149.6	365.25
Jupiter	778.3	4337
Neptune	4497	60200

opulation Growth Planets Example

Direct Linear Least Squares
The logarithmic model is

$$
\ln (p)=\ln (k)+a \ln (d)
$$

so if $P_{i}=\ln \left(p_{i}\right), D_{i}=\ln \left(d_{i}\right)$ ，and $K=\ln (k)$ ，the Linear Least Squares model， $P=K+a D$ ，satisfies the error：

$$
E(K, a)=\sum_{i=0}^{n}\left[\left(K+a D_{i}\right)-P_{i}\right]^{2}
$$

This is minimized for data set $\left(D_{i}, P_{i}\right), i=0, \ldots, 3$ ．
Earlier we saw an easy formulation without matrices：
Define the averages

$$
\bar{D}=\frac{1}{4} \sum_{i=0}^{3} D_{i} \quad \text { and } \quad \bar{P}=\frac{1}{4} \sum_{i=0}^{3} P_{i}
$$

The best fitting slope and intercept are

$$
a=\frac{\sum_{i=0}^{3}\left(D_{i}-\bar{D}\right) P_{i}}{\sum_{i=0}^{3}\left(D_{i}-\bar{D}\right)^{2}} \quad \text { and } \quad K=\bar{P}-a \bar{D}
$$

5050

Direct Linear Least Squares
The Allometric model is:

$$
p=k d^{a}
$$

The averages $\left(\ln \left(d_{i}\right)\right.$ and $\left.\ln \left(p_{i}\right)\right)$ are

$$
\bar{D}=\frac{1}{4} \sum_{i=0}^{3} D_{i}=6.03374 \quad \text { and } \quad \bar{P}=\frac{1}{4} \sum_{i=0}^{3} P_{i}=7.43946
$$

The best fitting slope is
$a=\frac{\sum_{i=0}^{3}\left(D_{i}-\bar{D}\right) P_{i}}{\sum_{i=0}^{3}\left(D_{i}-\bar{D}\right)^{2}}$
$=\frac{(4.05872-\bar{D}) 4.47688+(5.00797-\bar{D}) 5.90058+(6.65711-\bar{D}) 8.37494+(8.41117-\bar{D}) 11.00543}{(4.05872-\bar{D})^{2}+(5.00797-\bar{D})^{2}+(6.65711-\bar{D})^{2}+(8.41117-\bar{D})^{2}}$
$=1.50001$.

The best intercept is

$$
\ln (k)=K=\bar{P}-a \bar{D}=7.43946-1.50001(6.03374)=-1.61124
$$

so $k=0.199639$, giving Kepler's Law:

$$
p=0.199639 d^{1.5}
$$

