Additional Notes for Step Function

A more detailed study is provided for the step function and its Laplace transform. We consider the function in the figure below and want to express this function in terms of step functions. It is important to remember that the step function is an approximation of an "on/off" switch.

Step Example

The unit step function is defined:

$$
u_{c}(t)= \begin{cases}0, & t<c, \\ 1, & t \geq c .\end{cases}
$$

Thus, this function is "off" until $t=c$, then it turns "on". In the figure above we see that $f(t)$ is "off" until $t=1$, then $f_{1}(t)$ is turned "on". At $t=2, f_{1}(t)$ is turned "off", and $f_{2}(t)$ is turned "on". At $t=3$, all components are turned "off".

This can be readily expressed in terms of the unit step function (thinking as $+u_{c}(t)$ as turning something "on" at $t=c$ and $-u_{c}(t)$ as turning something "off" at $\left.t=c\right)$. From the description above, we have

$$
\begin{aligned}
f(t) & =f_{1}(t) u_{1}(t)-f_{1}(t) u_{2}(t)+f_{2}(t) u_{2}(t)-f_{2}(t) u_{3}(t), \\
& =f_{1}(t)\left(u_{1}(t)-u_{2}(t)\right)+f_{2}(t)\left(u_{2}(t)-u_{3}(t)\right), \\
& =2(t-1)\left(u_{1}(t)-u_{2}(t)\right)-2(t-3)\left(u_{2}(t)-u_{3}(t)\right) .
\end{aligned}
$$

Laplace Transform for $f(t)$

We have the following important entry in the Laplace transform table from our theorem in the lecture notes.

$$
\begin{equation*}
\mathcal{L}\left[u_{c}(t) f(t-c)\right]=e^{-c s} \mathcal{L}[f(t)]=e^{-c s} F(s), \quad s>a . \tag{1}
\end{equation*}
$$

It is important to note that the phase shift in $f,(f(t-c))$, matches the value c where the step function turns "on".

To take the Laplace transform for our example

$$
f(t)=2(t-1)\left(u_{1}(t)-u_{2}(t)\right)-2(t-3)\left(u_{2}(t)-u_{3}(t)\right),
$$

we rearrange terms to have the same phase shifts, i.e., modify $f_{1}(t)$ and $f_{2}(t)$ to align with the step functions in $f(t)$. We can rewrite

$$
\begin{aligned}
f(t) & =2(t-1) u_{1}(t)-(2(t-2)+2) u_{2}(t)-(2(t-2)-2) u_{2}(t)+2(t-3) u_{3}(t), \\
& =2(t-1) u_{1}(t)-4(t-2) u_{2}(t)+2(t-3) u_{3}(t)
\end{aligned}
$$

Now we use the Laplace transform entry that

$$
\begin{equation*}
\mathcal{L}[t]=\frac{1}{s^{2}}, \quad s>0 \tag{2}
\end{equation*}
$$

It easily follows from Eqns. (1) and (2) and the linearity of the Laplace tranform that

$$
\mathcal{L}[f(t)]=2 \frac{e^{-s}}{s^{2}}-4 \frac{e^{-2 s}}{s^{2}}+2 \frac{e^{-3 s}}{s^{2}}, \quad s>0
$$

