Additional Example for Step Function

Consider the IVP given by:

$$
y^{\prime \prime}+2 y^{\prime}+y=\left\{\begin{array}{ll}
t, & 0 \leq t<2, \\
0, & t \geq 2
\end{array}=t-(t-2) u_{2}(t)-2 u_{2}(t), \quad y(0)=0, \quad y^{\prime}(0)=2\right.
$$

Let $Y(s)=\mathcal{L}[y(t)]$, then

$$
s^{2} Y(s)-2+2 s Y(s)+Y(s)=\frac{1}{s^{2}}-\frac{e^{-2 s}}{s^{2}}-\frac{2 e^{-2 s}}{s}
$$

or

$$
Y(s)=\frac{2}{(s+1)^{2}}+\frac{1}{s^{2}(s+1)^{2}}-\frac{e^{-2 s}}{s^{2}(s+1)^{2}}-\frac{2 e^{-2 s}}{s(s+1)^{2}}
$$

We need the PFD of

$$
\frac{1}{s^{2}(s+1)^{2}}=\frac{A}{s}+\frac{B}{s^{2}}+\frac{C}{s+1}+\frac{D}{(s+1)^{2}} \quad \text { and } \quad \frac{2}{s(s+1)^{2}}=\frac{E}{s}+\frac{F}{s+1}+\frac{G}{(s+1)^{2}}
$$

The first PFD examines

$$
1=A s(s+1)^{2}+B(s+1)^{2}+C s^{2}(s+1)+D s^{2}
$$

With $s=0$, we have $B=1$, and with $s=-1$, we have $D=1$. The cubic terms give $A+C=0$, and the quadratic terms are $2 A+B+C+D=0$. Combining these gives $A=-2$ and $C=2$. Similar computations give $E=2, F=-2$, and $G=-2$. These results combine to give:

$$
Y(s)=-\frac{2}{s}+\frac{1}{s^{2}}+\frac{2}{s+1}+\frac{3}{(s+1)^{2}}+e^{-2 s}\left(-\frac{1}{s^{2}}+\frac{1}{(s+1)^{2}}\right)
$$

It follows that

$$
y(t)=-2+t+2 e^{-t}+3 e^{-t}+u_{2}(t)\left(-(t-2)+(t-2) e^{-(t-2)}\right)
$$

