\square

This Worksheet demonstrates commands for Laplace Transforms.
We use this to solve the following initial value problem.
$\bar{\gg}$ de $:=\operatorname{diff}(y(t), t \$ 2)+4 \cdot \operatorname{diff}(y(t), t)+13 \cdot y(t)=36 \cdot t \cdot \exp (-2 \cdot t) \cdot \sin (3 \cdot t)$;

$$
\begin{equation*}
d e:=\frac{\mathrm{d}^{2}}{\mathrm{~d} t^{2}} y(t)+4 \frac{\mathrm{~d}}{\mathrm{~d} t} y(t)+13 y(t)=36 t \mathrm{e}^{-2 t} \sin (3 t) \tag{1}
\end{equation*}
$$

The initial conditions are
$>y(0):=-3 ; \mathrm{D}(y)(0):=6 ;$

$$
\begin{gather*}
y(0):=-3 \\
\mathrm{D}(y)(0):=6 \tag{2}
\end{gather*}
$$

We need Maple's integral transform package
$>$ with(inttrans):
Before solving our problem above, we demonstrate some basic features such as performing a Partial Fractions Decomposition (PFD).

$$
\begin{align*}
& >F:=s \rightarrow \frac{\left(3 \cdot s^{2}+5 \cdot s-12\right)}{\left(s^{3}-s^{2}-6 \cdot s\right) \cdot\left(s^{2}+4 \cdot s+5\right)} \\
& \quad F:=s \mapsto \frac{3 s^{2}+5 s-12}{\left(s^{3}-s^{2}-6 s\right)\left(s^{2}+4 s+5\right)} \tag{3}
\end{align*}
$$

$>\operatorname{convert}(F(s)$, parfrac, $s)$;

$$
\begin{equation*}
\frac{34 s-9}{65\left(s^{2}+4 s+5\right)}+\frac{1}{13(s-3)}+\frac{2}{5 s}-\frac{1}{s+2} \tag{4}
\end{equation*}
$$

Command for finding the Laplace transform of a function. (One not readily in our Table.)
$>$ laplace $(t \cdot \exp (-2 \cdot t) \cdot \sin (3 \cdot t), t, s)$;

$$
\begin{equation*}
\frac{6(s+2)}{\left((s+2)^{2}+9\right)^{2}} \tag{5}
\end{equation*}
$$

Command for finding the Inverse Laplace transform.

$$
\begin{aligned}
&>\text { invlaplace }\left(\frac{18}{\left((s+5)^{2}+9\right)^{2}}, s, t\right) ; \\
& \frac{\mathrm{e}^{-5 t}(\sin (3 t)-3 t \cos (3 t))}{3}
\end{aligned}
$$

We proceed with a series of commands to solve the original IVP.
First taking the Laplace transform of the differential equation.
[> soln $:=\operatorname{laplace}(d e, t, s)$;
soln $:=s^{2} \operatorname{laplace}(y(t), t, s)+6+3 s+4$ laplace $(y(t), t, s)+13 \operatorname{laplace}(y(t), t, s)$

$$
=\frac{216(s+2)}{\left((s+2)^{2}+9\right)^{2}}
$$

Next use Maple's algebra to find $\mathrm{Y}(\mathrm{s})$.
soln $1:=\operatorname{solve}(\operatorname{soln}$, laplace $(y(t), t, s))$;

$$
\begin{equation*}
\operatorname{soln} 1:=-\frac{3\left(s^{5}+10 s^{4}+58 s^{3}+188 s^{2}+305 s+194\right)}{\left(s^{2}+4 s+13\right)^{3}} \tag{8}
\end{equation*}
$$

Perform a PFD.
[> soln $2:=$ convert(soln 1, parfrac, s);

$$
\begin{equation*}
\operatorname{soln} 2:=\frac{216 s+432}{\left(s^{2}+4 s+13\right)^{3}}+\frac{-3 s-6}{s^{2}+4 s+13} \tag{9}
\end{equation*}
$$

Take inverse Laplace transform to obtain solution.
$>$ invlaplace $(\operatorname{soln} 2, s, t)$;

$$
\begin{equation*}
\mathrm{e}^{-2 t}\left(t \sin (3 t)-3 \cos (3 t)\left(t^{2}+1\right)\right) \tag{10}
\end{equation*}
$$

EStandard method of solving the IVP follows with its graph (after clearing ICs from above).
> $y(0):=' y(0)^{\prime} ; \mathrm{D}(y)(0):=' \mathrm{D}(y)(0)^{\prime} ;$

$$
\begin{align*}
y(0) & :=y(0) \\
\mathrm{D}(y)(0) & :=\mathrm{D}(y)(0) \tag{11}
\end{align*}
$$

$\overline{=}>$ dsolve $(\{d e, y(0)=-3, \mathrm{D}(y)(0)=6\}, y(t))$;

$$
\begin{equation*}
y(t)=-3 \mathrm{e}^{-2 t} \cos (3 t)-3 t \mathrm{e}^{-2 t}\left(t \cos (3 t)-\frac{\sin (3 t)}{3}\right) \tag{12}
\end{equation*}
$$

$\stackrel{\square}{7} \quad z:=\operatorname{unapply}(r h s(\%), t)$;

$$
\begin{equation*}
z:=t \mapsto-3 \mathrm{e}^{-2 t} \cos (3 t)-3 t \mathrm{e}^{-2 t}\left(t \cos (3 t)-\frac{\sin (3 t)}{3}\right) \tag{13}
\end{equation*}
$$

$\stackrel{p}{ }>\operatorname{lot}(z(t), t=0 . .2 \cdot \mathrm{Pi})$;

