This Worksheet demonstrates commands for Laplace Transforms. We use this to solve the following initial value problem.

>
$$de := diff(y(t), t$$
 (1) $+ 4 \cdot diff(y(t), t) + 13 \cdot y(t) = 36 \cdot t \cdot \exp(-2 \cdot t) \cdot \sin(3 \cdot t);$
 $de := \frac{d^2}{dt^2} y(t) + 4 \frac{d}{dt} y(t) + 13 y(t) = 36 t e^{-2t} \sin(3t)$
(1)

The initial conditions are

>

>
$$y(0) := -3; D(y)(0) := 6;$$

$$y(0) := -3$$

D(y)(0) := 6 (2)

We need Maple's integral transform package

> with(inttrans) :

Before solving our problem above, we demonstrate some basic features such as performing a Partial Fractions Decomposition (PFD).

>
$$F := s \rightarrow \frac{(3 \cdot s^2 + 5 \cdot s - 12)}{(s^3 - s^2 - 6 \cdot s) \cdot (s^2 + 4 \cdot s + 5)};$$

$$F := s \mapsto \frac{3 s^2 + 5 s - 12}{(s^3 - s^2 - 6 s) (s^2 + 4 s + 5)}$$
(3)

> convert(F(s), parfrac, s);

$$\frac{34 s - 9}{65 (s^2 + 4 s + 5)} + \frac{1}{13 (s - 3)} + \frac{2}{5 s} - \frac{1}{s + 2}$$
(4)

Command for finding the Laplace transform of a function. (One not readily in our Table.)

>
$$laplace(t \cdot exp(-2 \cdot t) \cdot sin(3 \cdot t), t, s);$$

$$\frac{6(s+2)}{((s+2)^2+9)^2}$$
(5)

Command for finding the Inverse Laplace transform.

>
$$invlaplace\left(\frac{18}{((s+5)^2+9)^2}, s, t\right);$$

 $\frac{e^{-5t}(\sin(3t)-3t\cos(3t))}{3}$ (6)

We proceed with a series of commands to solve the original IVP. First taking the Laplace transform of the differential equation.

>
$$soln := laplace(de, t, s);$$

 $soln := s^2 laplace(y(t), t, s) + 6 + 3 s + 4 s laplace(y(t), t, s) + 13 laplace(y(t), t, s)$ (7)

$$=\frac{216 (s+2)}{((s+2)^{2}+9)^{2}}$$
Next use Maple's algebra to find Y(s).
> soln1 := solve(soln, laplace(y(t), t, s));
soln1 := $-\frac{3 (s^{2}+10 s^{2}+58 s^{3}+188 s^{2}+305 s+194)}{(s^{2}+4s+13)^{3}}$
(8)
Perform a PFD.
> soln2 := convert(soln1, parfrac, s);
soln2 := $\frac{216 s+432}{(s^{2}+4s+13)^{3}} + \frac{-3 s-6}{s^{2}+4s+13}$
(9)
Take inverse Laplace transform to obtain solution.
> invlaplace(soln2, s, t);
 $e^{-2t} (t \sin(3t) - 3\cos(3t) (t^{2}+1))$
(10)
Standard method of solving the IVP follows with its graph (after clearing ICs from above).
> y(0) := y(0)^{1}(Dy)(0) := D(y)(0)^{1}:= y(0)
 $D(y)(0) := D(y)(0)$
(11)
> dsolve({de, y(0) = -3, D(y)(0) = 6}, y(t));
 $y(t) = -3 e^{-2t}\cos(3t) - 3t e^{-2t} (t\cos(3t) - \frac{\sin(3t)}{3})$
(12)
> z := unapply(rhs(%), t);
 $z := t \mapsto -3 e^{-2t}\cos(3t) - 3t e^{-2t} (t\cos(3t) - \frac{\sin(3t)}{3})$
(13)
> plot(z(t), t=0..2·Pi);
 $0 - \frac{\pi}{4} = \frac{\pi}{2} = \frac{3\pi}{4} = \pi = \frac{5\pi}{4} = \frac{3\pi}{2} = \frac{7\pi}{4} = 2\pi$
 $t - 2 - \frac{1}{2} = \frac{1}{-3}$