Outline

Calculus for the Life Sciences

Lecture Notes－Quadratic Equations and Functions

Joseph M．Mahaffy，〈jmahaffy＠mail．sdsu．edu〉

Department of Mathematics and Statistics Dynamical Systems Group
Computational Sciences Research Center
San Diego State University San Diego，CA 92182－7720
http：／／www－rohan．sdsu．edu／～jmahaffy
Spring 2017Weak Acids
－Formic Acid
－Equilibrium Constant，K_{a}
－Concentration of Acid

Quadratic Equations

－
Quadratic Function
－Vertex
－Intersection of Line and Parabola

－
Applications
－Height of Ball

－Many of the organic acids found in biological applications are weak acids
－Weak acid chemistry is important in preparing buffer solutions for laboratory cultures

Ants

－Formic acid (HCOOH) is a relatively strong weak acid that ants use as a defense
－The strength of this acid makes the ants very unpalatable to predators

The Chemistry of Dissociation for formic acid：

$$
\mathrm{HCOOH} \underset{k_{-1}}{\stackrel{k_{1}}{\rightleftharpoons}} \mathrm{H}^{+}+\mathrm{HCOO}^{-} .
$$

－Each acid has a distinct equilibrium constant K_{a} that depends on the properties of the acid and the temperature of the solution
－For formic acid，$K_{a}=1.77 \times 10^{-4}$
－Let $[X]$ denote the concentration of chemical species X
－Formic acid is in equilibrium，when：

$$
K_{a}=\frac{\left[H^{+}\right]\left[\mathrm{HCOO}^{-}\right]}{[\mathrm{HCOOH}]}
$$

| Weak Acids
 Quadratic Equations
 Quadratic Function
 Applications |
| :---: | | Formic Acid |
| :--- |
| Equilibrium Constant，K_{a} |
| Concentration of Acid |

The previous equation is written

$$
\left[H^{+}\right]^{2}+K_{a}\left[H^{+}\right]-K_{a} x=0
$$

This is a quadratic equation in $\left[H^{+}\right]$and is easily solved using the quadratic formula

$$
\left[H^{+}\right]=\frac{1}{2}\left(-K_{a}+\sqrt{K_{a}^{2}+4 K_{a} x}\right)
$$

Only the positive solution is taken to make physical sense

Based on K_{a} and amount of formic acid，we want to find the concentation of $\left[H^{+}\right]$
－If formic acid is added to water，then $\left[\mathrm{H}^{+}\right]=\left[\mathrm{HCOO}^{-}\right]$
－If x is the normality of the solution，then
$x=[\mathrm{HCOOH}]+\left[\mathrm{HCOO}^{-}\right]$
－It follows that $[\mathrm{HCOOH}]=x-\left[H^{+}\right]$
－Thus，

$$
K_{a}=\frac{\left[H^{+}\right]\left[H^{+}\right]}{x-\left[H^{+}\right]}
$$

| Weak Acids
 Quadratic Equations
 Quadratic Function
 Applications |
| :---: | | Formic Acid |
| :--- |
| Equilibrium Constant，K_{a} |
| Concentration of Acid |

Find the concentration of $\left[H^{+}\right]$for a 0.1 N solution of formic acid

Solution：Formic acid has $K_{a}=1.77 \times 10^{-4}$ ，and a 0.1 N solution of formic acid gives $x=0.1$

The equation above gives

$$
\left[H^{+}\right]=\frac{1}{2}\left(-0.000177+\sqrt{(0.000177)^{2}+4(0.000177)(0.1)}\right)
$$

Or

$$
\left[H^{+}\right]=0.00412
$$

Since pH is defined to be $-\log _{10}\left[H^{+}\right]$，this solution has a pH of 2.385

Review of Quadratic Equations

Quadratic Equation：The general quadratic equation is

$$
a x^{2}+b x+c=0
$$

Three methods for solving quadratics：
（1）Factoring the equation
（2）The quadratic formula

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

（3）Completing the Square

Quadratic Equations
Quadratic Function
Applications

Example of the Quadratic Formula

Consider the quadratic equation：

$$
x^{2}+2 x-2=0
$$

Find the values of x that satisfy this equation．

Skip Example

Solution：This equation needs the quadratic formula

$$
x=\frac{-2 \pm \sqrt{2^{2}-4(1)(-2)}}{2(1)}=-1 \pm \sqrt{3}
$$

or

$$
x=-2.732 \quad \text { and } \quad x=0.732
$$

Consider the quadratic equation：

$$
x^{2}+x-6=0
$$

Find the values of x that satisfy this equation．

Skip Example

Solution：This equation is easily factored

$$
(x+3)(x-2)=0
$$

Thus，

$$
x=-3 \quad \text { and } \quad x=2
$$

Consider the quadratic equation：

$$
x^{2}-4 x+5=0
$$

Find the values of x that satisfy this equation．

Skip Example

Solution：We solve this by completing the square Rewrite the equation

$$
x^{2}-4 x+4=-1
$$

$$
(x-2)^{2}=-1 \quad \text { or } \quad x-2= \pm \sqrt{-1}= \pm i
$$

This has no real solution，only the complex solution

$$
x=2 \pm i
$$

The general form of the Quadratic Function is

$$
f(x)=a x^{2}+b x+c,
$$

where $a \neq 0$ and b and c are arbitrary．
The graph of

$$
y=f(x)
$$

produces a parabola

5050

Write the quadratic function（recall completing the squares）

$$
y=a(x-h)^{2}+k
$$

The Vertex of the Parabola is the point

$$
\left(x_{v}, y_{v}\right)=(h, k)
$$

The parameter a determines the direction the parabola opens
－If $a>0$ ，then the parabola opens upward
－If $a<0$ ，then the parabola opens downward
－As $|a|$ increases the parabola narrows

Example of Line and Parabola

Consider the functions

$$
f_{1}(x)=3-2 x \quad \text { and } \quad f_{2}=x^{2}-x-9
$$

Skip Example

－Find the x and y intercepts of both functions
－Find the slope of the line
－Find the vertex of the parabola
－Find the points of intersection
－Graph the two functions

Solution（cont）：The parabola

$$
f_{2}=x^{2}-x-9
$$

$$
f_{1}(x)=3-2 x
$$

－Has y－intercept $y=3$
－Has x－intercept $x=\frac{3}{2}$
－Has slope $m=-2$
－Has y－intercept $y=-9$ ，since $f_{2}(0)=-9$
－By quadratic formula the x－intercepts satisfy

$$
x=\frac{1 \pm \sqrt{37}}{2} \quad \text { or } \quad x \approx-2.541,3.541
$$

－Vertex satisfies $x=\frac{1}{2}$ and $y=-\frac{37}{4}$

Vertex

Quadratic Equations
Quadratic Function Applications

Intersection of Line and Parabola
Example of Line and Parabola
Solution（cont）：The points of intersection of

$$
f_{1}(x)=3-2 x \quad \text { and } \quad f_{2}=x^{2}-x-9
$$

Find the points of intersection by setting the equations equal to each other

$$
3-2 x=x^{2}-x-9 \quad \text { or } \quad x^{2}+x-12=0
$$

Factoring

$$
(x+4)(x-3)=0 \quad \text { or } \quad x=-4,3
$$

Points of intersection are

$$
\left(x_{1}, y_{1}\right)=(-4,11) \quad \text { or } \quad\left(x_{2}, y_{2}\right)=(3,-3)
$$

A ball is thrown vertically with a velocity of $32 \mathrm{ft} / \mathrm{sec}$ from ground level $(h=0)$ ．The height of the ball satisfies the equation：

$$
h(t)=32 t-16 t^{2}
$$

Skip Example
－Sketch a graph of $h(t)$ vs．t
－Find the maximum height of the ball
－Determine when the ball hits the ground

Solution：Factoring

$$
h(t)=32 t-16 t^{2}=-16 t(t-2)
$$

This gives t－intercepts of $t=0$ and 2
The midpoint between the intercepts is $t=1$
Thus，the vertex is $t_{v}=1$ ，and $h(1)=16$

Solution（cont）：The graph is

－The maximum height of the ball is 16 ft
－The ball hits the ground at $t=2 \mathrm{sec}$

