1. (1 pt) mathbioLibrary/setABiocLabs/Lab121_I1_vert_ball.png
Because of the accuracy of WebWork, you should use 5 or 6 significant figures on all problems.
A ball is thrown vertically and data are collected at various times in its flight.

<table>
<thead>
<tr>
<th>Time (sec)</th>
<th>Distance (m)</th>
<th>Time (sec)</th>
<th>Distance (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>7.7</td>
<td>2</td>
<td>16.3</td>
</tr>
<tr>
<td>1</td>
<td>13</td>
<td>2.5</td>
<td>14.3</td>
</tr>
<tr>
<td>1.5</td>
<td>16</td>
<td>3</td>
<td>9.9</td>
</tr>
</tbody>
</table>

Assume that air resistance can be ignored, then the height of the ball satisfies the quadratic equation:
\[h(t) = v_0 t - \frac{gt^2}{2}, \]
due to gravity. (Note: There is no constant term as we are assuming that the height of the ball is zero at \(t = 0 \).)

a. Use the Excel’s trendline to find the best constants \(v_0 \) and \(g \) that fit the data in the table. (Remember that when you are using trendline, you must decide if your graph passes through the origin. Does this one? (Yes or No) ___)

\(v_0 = \) ____ m/sec
\(g = \) ____ m/sec²

Find the time that your model predicts the ball will hit the ground.
Time ball hits the ground = ____ sec
Find how high the ball goes, and find the time that it reaches this highest point.
Maximum height = ____ m
Time of Maximum height = ____ sec

b. In your Lab Report, create a graph of the quadratic function and the data. How well does the model fit the data?

c. The average velocity between two times \(t_1 \) and \(t_2 \) is given by the formula:
\[v_{ave} = \frac{h(t_2) - h(t_1)}{t_2 - t_1}. \]
Compute the average velocity with the function \(h(t) \) that you found above between each of the following pairs of times:
Between \(t_1 = 1 \) and \(t_2 = 2 \), \(v_{ave} = \) ____ m/sec
Between \(t_1 = 1 \) and \(t_2 = 1.5 \), \(v_{ave} = \) ____ m/sec
Between \(t_1 = 1 \) and \(t_2 = 1.1 \), \(v_{ave} = \) ____ m/sec
Between \(t_1 = 1 \) and \(t_2 = 1.01 \), \(v_{ave} = \) ____ m/sec

Between \(t_1 = 2 \) and \(t_2 = 3 \), \(v_{ave} = \) ____ m/sec
Between \(t_1 = 2 \) and \(t_2 = 2.2 \), \(v_{ave} = \) ____ m/sec
Between \(t_1 = 2 \) and \(t_2 = 2.05 \), \(v_{ave} = \) ____ m/sec
Between \(t_1 = 2 \) and \(t_2 = 2.002 \), \(v_{ave} = \) ____ m/sec
Between \(t_1 = 2.8 \) and \(t_2 = 3 \), \(v_{ave} = \) ____ m/sec
Between \(t_1 = 2.9 \) and \(t_2 = 3 \), \(v_{ave} = \) ____ m/sec
Between \(t_1 = 3 \) and \(t_2 = 3.01 \), \(v_{ave} = \) ____ m/sec
Between \(t_1 = 2.999 \) and \(t_2 = 3 \), \(v_{ave} = \) ____ m/sec

d. As seen in the lecture notes, the velocity of the ball at a given time is the derivative of the height function at that time. Use the techniques from class or Maple to compute the derivative of \(h(t) \),
\[h'(t) = v(t). \]
\(v(t) = \) ____ m/sec

Evaluate the velocity at \(t = 1, 2, 3 \)
\(v(1) = \) ____ m/sec
\(v(2) = \) ____ m/sec
\(v(3) = \) ____ m/sec

e. In your Lab Report, write a brief paragraph describing how the computed velocities in Part d compare to the average velocities computed in Part c.
f. For this part of the problem, you again compute some average velocities:
\[v_a(t_m) = \frac{h(t_2) - h(t_1)}{t_2 - t_1}, \] where \(t_m = \frac{t_1 + t_2}{2} \).
Create the following coordinate pairs, \((t_m, v_a(t_m))\), given values of \(t_1 \) and \(t_2 \).
For \(t_1 = 0 \) and \(t_2 = 0.02 \), then \((t_m, v_a(t_m)) = (\) ____ , ____).
For \(t_1 = 0.99 \) and \(t_2 = 1.01 \), then \((t_m, v_a(t_m)) = (\) ____ , ____).
For \(t_1 = 1.99 \) and \(t_2 = 2.01 \), then \((t_m, v_a(t_m)) = (\) ____ , ____).
For \(t_1 = 2.999 \) and \(t_2 = 3.01 \), then \((t_m, v_a(t_m)) = (\) ____ , ____).
g. In your Lab Report, use the coordinate pairs found above to create a graph of \(v_a(t) \) versus \(t \) using these data. Use trendline (or any other method) to find the equation of this graph.
\(v_a(t) = \) ____ m/sec
The \(v_a \)-intercept = ____ m/sec
The \(t \)-intercept = ____ sec
In your Lab Report, describe the graph that you have produced. Compare this equation to the equation of the derivative \(h'(t) \) that you obtained above.

3