The more recent versions of Maple have added an additional package called Maplets, which allows the user to create a Java applet-like interface. This type of package porvides a user friendly interface for applications that are used for instruction of people unfamiliar with Maple or for easy access and changes to routines that are used frequently.

Below is a Maplet created by Jason Schattman of Waterloo Maple for use in a seminar teaching the new features of Maple 7.0. It provides two Maplets to illustrate the ideas of Riemann sums. As always, there is a hyperlink to obtain the Maple version of this worksheet. An additional hyperlink is provided for another demonstration that comes from the Maple Applications center.

 > restart:

 > with(student);

 > leftbox( x^3, x=-1..1, 15);

 >

 > restart: with(Maplets):with(Maplets[Elements]):

 > riemann := Maplet( Window['W1'](   [ ["Enter a function f(x)=", TextField['f']("x^2")],     ["Enter left endpoint a=", TextField['a']("0", 3),     "Enter right endpoint b=", TextField['b']("1", 3)], #end 1     [Plotter['P']()], #end 2     [Button['b1']("Plot f(x)", 'onclick'=Evaluate('P'='plot(f, x=a..b)'))], #end 3     ["Choose number of rectangles"],     [Slider['s1'](0..100, 10, 'majorticks'=20, 'minorticks'=5, 'snapticks'='false')], #end 4     [Button['b2']("Show Riemann sum", 'onclick'=Evaluate('P'='student[leftbox](f, x=a..b, s1)'))]   ]  ) ):

 > Display(riemann);

`Initializing Java runtime environment.`

 > riemann2 := Maplet( Window['W1']  (   [ ["Enter a function f(x)=", TextField['f']("x^2")],     ["Enter left endpoint a=", TextField['a']("0", 3),      "Enter right endpoint b=", TextField['b']("1", 3)], #end 1     [Plotter['P']()], #end 2     [Button['b1']("Plot f(x)", 'onclick'=Evaluate('P'='plot(f, x=a..b)'))], #end 3     ["Choose number of rectangles"],     [Slider['s1'](0..100, 10, 'majorticks'=20, 'minorticks'=5, 'snapticks'='false')], #end 4     [Button['b2']("Show Riemann sum", 'onclick'='ShowSum')],     #["Riemann sum", TextField['sum'](),     ["Riemann sum", MathMLViewer['sum'](height=70, width=200),      "Numeric approximation", TextField['numericSum'](4)]   ]  ), Action['ShowSum'](Evaluate('sum'='MathML[Export](student[leftsum](f, x=a..b, s1))'),                   Evaluate('numericSum'='evalf(student[leftsum](f, x=a..b, s1), 5)'),                   Evaluate('P'='student[leftbox](f, x=a..b, s1)')                    ) ):

 > Display(riemann2);

 >