1. a. \(f'(x) = 3 \cos(3x - 5) - \frac{3 \sin(3x)}{\cos(3x)}. \)

b. Rewrite the function as \(g(x) = 4 \left(\cos(x^2 + 2) \right)^{-1} - (x^2 - \sin^3(x^2))^4, \) then the chain rule gives

\[g'(x) = -8x \left(\cos(x^2 + 2) \right)^{-2} \sin(x^2 + 2) - 4(x^2 - \sin^3(x^2))^3(2x - 6x \sin^2(x^2) \cos(x^2)). \]

c. Use the quotient rule and product rule

\[h'(x) = \frac{(x^3 + \cos(4x))(4x^3 - 2e^{-2x}) - (x^4 + e^{-2x})(3x^2 - 4 \sin(4x))}{(x^3 + \cos(4x))^2} - e^{-x} \cos(2x) - 2e^{-x} \sin(2x). \]

d. With the product rule and chain rule,

\[k'(x) = -3x^2(x^2 - 5)^3 \sin(x^3) + 6x(x^2 - 5)^2 \cos(x^3) - 2 \cos(2x)e^{\sin(2x)}. \]

2. a. The derivative is given by

\[f'(t) = \frac{2 \cos(2t) \cos(2t) + 2 \sin(2t) \sin(2t)}{\cos^2(2t)} = \frac{2}{\cos^2(2t)}, \]

since \(\sin^2(2t) + \cos^2(2t) = 1. \) It follows that \(f'(0) = 2/\cos^2(0) = 2. \) Notice that since the denominator is squared, it follows that the derivative is always positive for all \(t \) that the derivative is defined.

b. \(f(t) \) is zero when \(\sin(2t) = 0. \) The sine function is zero when its argument is an integer multiple of \(\pi. \) For \(t \in [0, 2\pi], \ f(t) = 0 \) at \(t = 0, \pi/2, \pi, 3\pi/2, 2\pi. \) The cosine function is zero when its argument is \(\pi/2 + n\pi \) for \(n \) an integer. Thus, the vertical asymptotes occur halfway between zeroes of \(f, \) so at \(t = \pi/4, 3\pi/4, 5\pi/4, 7\pi/4. \)

c. The graph of \(f(t) \) for \(t \in [0, 2\pi] \) is below.
3. The y-intercept satisfies $f(0) = -4$. The x-intercept satisfies $f(x) = 0$, which gives $x = 4$. The derivative satisfies
\[
f'(x) = 2(x - 4)e^{2x} + e^{2x} = (2x - 7)e^{2x}.
\]
The derivative is zero at $x = 3.5$, so $f(3.5) = -0.5e^7 \simeq -548.3$. Thus, a minimum occurs at $(3.5, -0.5e^7) \simeq (3.5, -548.3)$. There is a horizontal asymptote with $y = 0$ as $x \to -\infty$. The graph is below.

4. The function, $y = 5 \sin(3x) - 4$, has a period of $x = 2\pi/3$. The function oscillates about $y = -4$ with an amplitude of 5. It begins at $(0, -4)$, goes to a maximum at $(\pi/6, 1)$, continues through $(\pi/3, -4)$, then reaches a minimum at $(\pi/2, -9)$, and ends its cycle at $(2\pi/3, -4)$. The maxima occur at $x = \pi/6, 5\pi/6, 3\pi/2$. The graph of the function is below.
5. a. The damped spring-mass system, \(y(t) = 2e^{-2t} \sin(2t) \), has a velocity
\[
v(t) = y'(t) = 4e^{-2t} \cos(2t) - 4e^{-2t} \sin(2t) \\
= 4e^{-2t}(\cos(2t) - \sin(2t))
\]
b. The maximum occurs when \(\cos(2t) = \sin(2t) \) or \(t = \pi/8 \). Thus, the maximum is
\[
y(\pi/8) = 2e^{-\pi/4} \sin(\pi/4) \approx 0.6448.
\]
The mass returns to \(y(t) = 0 \) when \(\sin(2t) = \sin(\pi) \) or \(t = \pi/2 \). Below to the left is a graph of the mass.

6. a. The basilar fiber vibrates through zero when the argument of \(\sin(t/2) \) equals \(n\pi \) for \(n \) an integer. It follows that the zeroes occur when \(t = 0, 2\pi, 4\pi \).

b. The velocity is given by
\[
v(t) = z'(t) = \frac{15}{2}e^{-t/2} \cos(t/2) - \frac{15}{2}e^{-t/2} \sin(t/2) \\
= \frac{15}{2}e^{-t/2}(\cos(t/2) - \sin(t/2))
\]
c. The extrema occur when \(\cos(t/2) = \sin(t/2) \), so \(t/2 = \pi/4 + n\pi \) for \(n \) an integer. There is a maximum at \(t = \pi/2 \) with
\[
z(\pi/2) = 15e^{-\pi/4} \sin(\pi/4) \simeq 4.836.
\]
This is followed by a minimum at \(t = 5\pi/2 \) with
\[
z(5\pi/2) = 15e^{-5\pi/4} \sin(5\pi/4) \simeq -0.2090.
\]
The graph of \(z(t) \) for \(t \in [0, 4\pi] \) is shown above to the right.
7. a. The periodic contractions of 10/min implies that $0.1\omega = 2\pi$ or $\omega = 20\pi$. The average value
$A = \frac{4+1}{2} = 2.5$, while the amplitude is given by $B = 4 - 2.5 = 1.5$. Thus, the radius of the small
intestine is given by
$$R(t) = 2.5 + 1.5 \cos(20\pi t).$$

b. The graph of $R(t)$ for $t \in [0,0.2]$ is shown below to the left. The maxima occur at
t = 0, 0.1, 0.2 min, and the minima are halfway between the maxima with
t = 0.05, 0.15 min.

c. The derivative of $R(t)$ is given by
$$R'(t) = -30\pi \sin(20\pi t).$$
The maximum rate of decrease is when the sine function is 1, which occurs when $20\pi t = \pi/2$ or
t = $\frac{1}{40} = 0.025$ min with
$$R'(0.025) = -30\pi \simeq 94.25 \text{ cm/min}.$$
and find the maximum rate of decrease in the radius $R(t)$ (in cm/min) and the first time after
t = 0 when this occurs.

8. a. The period is 365 days, so $365\omega = 2\pi$ or $\omega = \frac{2\pi}{365} \simeq 0.01721$. The average length of time
is $\alpha = \frac{1162+327}{2} = 744.5$ min. The amplitude is given by $\beta = 1162 - 744.5 = 417.5$ min. The
maximum occurs on day 170, so $\omega(170 - \phi) = \pi/2$ (based on the maximum of the sine function).
Thus, $170 - \phi = \frac{365}{4} = 91.25$ or $\phi = 78.75$ day. It follows that
$$L(t) = 744.5 + 417.5 \sin(0.01721(t - 78.75)).$$
The length of day for Ground Hog’s day is $L(32) = 744.5 + 417.5 \sin(0.01721(32 - 78.75)) = 443.7$ min in Anchorage.

b. The derivative of $L'(t) = 7.185 \cos(0.01721(t - 78.75))$. The maximum rate of change occurs
when cosine is 1, so $L'(78.75) = 7.185 \text{ min/day}$, which occurs on day 78.75 or about March 21, the
first day of spring. A graph is shown above to the right.
9. The area of the brochure is \(A = xy = 125 \), where \(x \) is the width of the page and \(y \) is the length of the page. The area of the printed page, which is to be maximized is given by

\[
P = (x - 4)(y - 5).
\]

From the constraint on the page area, we have \(y = 125/x \), which when substituted above gives

\[
P(x) = (x - 4) \left(\frac{125}{x} - 5 \right) = 125 - \frac{500}{x} - 5x + 20 = 145 - 500x^{-1} - 5x.
\]

The maximum is found by differentiation, which gives

\[
P'(x) = 500x^{-2} - 5 = \frac{5(100 - x^2)}{x^2}.
\]

This is zero when \(x = 10 \). It follows that \(y = 12.5 \). So the brochure has the dimensions 10\(\times \)12.5 with the printed region having dimensions 6\(\times \)7.5 or 45 \(\text{in}^2 \).

10. Combining the number of drops with the energy function, we have

\[
E(h) = hN(h) = h \left(1 + \frac{10}{h - 1} \right) = h \left(\frac{h - 1 + 10}{h - 1} \right) = \frac{h^2 + 9h}{h - 1}.
\]

This is differentiated to give

\[
E'(h) = \frac{(h - 1)(2h + 9) - (h^2 + 9h)}{(h - 1)^2} = \frac{h^2 - 2h - 9}{(h - 1)^2}.
\]

A minimum occurs when \(h^2 - 2h - 9 = 0 \), so

\[
h = 1 \pm \sqrt{10} = -2.1623, 4.1623.
\]

It follows that the minimum energy occurs when \(h = 1 + \sqrt{10} = 4.1623 \) m, which give the height that a crow should fly to minimize the energy needed to break open a walnut.

11. From the diagrams, we have that \(r^2 + h^2 = a^2 \), which gives \(h^2 = a^2 - r^2 \). The circumference of the base of the cone is \(2\pi r = a\theta \), where \(\theta \) is in radians. (Radians are an easy means of determining the length of a sector of a circle.) Thus, \(r = a\theta/2\pi \). It follows that \(h^2 = a^2 - a^2\theta^2/(4\pi^2) \). The volume of the water cup is given by

\[
V = \frac{\pi r^2h}{3} = \frac{\pi}{3} \left(\frac{a\theta}{2\pi} \right)^2 \sqrt{a^2 - \frac{a^2\theta^2}{4\pi^2}}
\]

\[
V(\theta) = \frac{a^3\theta^2}{12\pi} \sqrt{1 - \frac{\theta^2}{4\pi^2}} = \frac{a^3}{12\pi} \theta^2 \left(1 - \frac{\theta^2}{4\pi^2} \right)^{1/2}.
\]
This expression is differentiated with respect to θ.

\[V'(\theta) = \frac{a^3}{12\pi} \left(\frac{\theta^2}{2} \left(1 - \frac{\theta^2}{4\pi^2} \right)^{-1/2} \left(-\frac{2\theta}{4\pi^2} \right) + 2\theta \left(1 - \frac{\theta^2}{4\pi^2} \right)^{1/2} \right) \]

\[= \frac{a^3}{12\pi \left(1 - \frac{\theta^2}{4\pi^2} \right)^{1/2}} \left(-\frac{\theta^3}{4\pi^2} + 2\theta \left(1 - \frac{\theta^2}{4\pi^2} \right) \right) \]

\[= \frac{a^3\theta}{12\pi \left(1 - \frac{\theta^2}{4\pi^2} \right)^{1/2}} \left(2 - \frac{3\theta^2}{4\pi^2} \right) \]

The maximum is found by setting this derivative above equal to zero, so $2 - \frac{3\theta^2}{4\pi^2} = 0$. It follows that $\theta^2 = \frac{8\pi^2}{3}$ or

\[\theta = 2\pi \sqrt{\frac{3}{2}} \approx 5.1302. \]

Thus, $\theta = 2\pi \sqrt{\frac{2}{3}} \approx 5.1302$ radians (which is about 294°), so a sector of 1.1530 radians or about 66° is removed. The dimensions of the cone should have a radius of $r = a \sqrt{\frac{2}{3}} \approx 0.8165a$ and a height of $h = a \sqrt{\frac{1}{3}} \approx 0.57735a$.

12. a. The first two iterations are

\[B_1 = B_0 + 0.03B_0 \left(1 - \frac{B_0}{500,000} \right) = 10000 + 300 \left(1 - \frac{500,000}{500,000} \right) = 10,294 \]

\[B_1 = 10,294 + 0.03(10,294) \left(1 - \frac{10,294}{500,000} \right) = 10596.5to \]

b. The equilibria satisfy

\[B_e = B_e + 0.03B_e \left(1 - \frac{B_e}{500,000} \right) \quad \text{or} \quad 0.03B_e \left(1 - \frac{B_e}{500,000} \right) = 0. \]

From this equation, it follows that either $B_e = 0$ or $1 - \frac{B_e}{500,000} = 0$, which gives $B_e = 500,000$. Thus, the equilibria are $B_e = 0$ and 500,000.

The updating function is given by

\[F(B_n) = B_n + 0.03B_n \left(1 - \frac{B_n}{500,000} \right) = 1.03B_n - \frac{0.03}{500,000} B_n^2. \]

Its derivative is

\[F'(B_n) = 1.03 - \frac{0.06}{500,000} B_n. \]

At $B_e = 0$, $F'(0) = 1.03 > 1$, so the equilibrium at $B_e = 0$ is unstable and solutions growing monotonically away from this equilibrium. At $B_e = 500,000$, $F'(500,000) = 0.97 < 1$, so the equilibrium at $B_e = 500,000$ is stable and solutions growing monotonically toward this equilibrium.