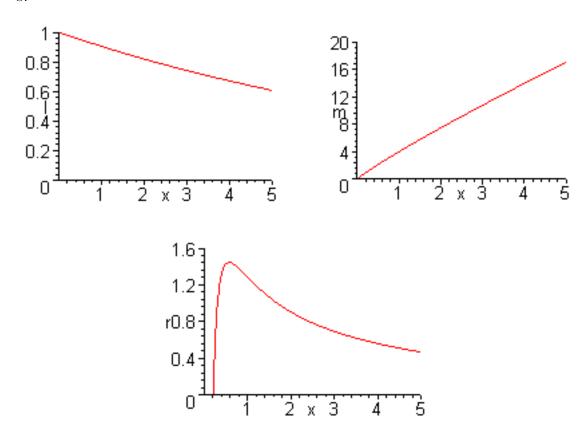

- 1. Width = 4, Height = 8. $(-2 \le x \le 2, 0 \le y \le 8)$ $A_{max} = 32$.
- 2. 5 m perpendicular to the river by 10 m parallel to the river. $A_{max} = 50 \text{ m}^2$.
- 3. Width = 10 in, length = 20 in, height = 20/3 in. $V_{max} = 4000/3$ in³.
- 4. Base = 4 in \times 4 in, height = 2 in. A_{min} = 48 in².
- 5. Radius of can = $10/\sqrt[3]{2\pi} \simeq 5.419$ cm, height = $10\sqrt[3]{4/\pi} \simeq 10.839$ cm.
- 6. Width = $2r/\sqrt{3}$, depth = $2r\sqrt{2/3}$.
- 7. Maximum reaction at x = a/2.
- 8. a. Optimal concentration c=0.1 M, $P_{max}=50$ organisms/cm².

b.



9. Maximum profit when x = r/2 is the harvesting effort, resulting in K/2 fish in the population.

Maximum number of fish when harvesting effort x = 0, with equilibrium population of fish at K, the carrying capacity.

10. a. Optimal age is $x = e \cdot b^{-1/c}$. For parameters in Part b. this is x = 0.582.

b.

